| 研究生: |
徐蓉彥 Hsu, Jung-Yen |
|---|---|
| 論文名稱: |
探討屏東沿海地區地層下陷對海水入侵之影響 Study on effects of land subsidence on seawater intrusion in the Pingtung coastal area |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng |
| 共同指導教授: |
陳璋玲
Chen, Chung-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 海洋科技與事務研究所 Institute of Ocean Technology and Marine Affairs |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | MODFLOW 、MT3D 、屏東沿海地區 、地層下陷 、孔彈性理論 |
| 外文關鍵詞: | MODFLOW, MT3D, Pingtung coastal area, land subsidence, theory of poroelasticity |
| 相關次數: | 點閱:143 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
屏東平原蘊藏豐沛的地下水,為當地居民重要的用水來源,然而隨著養殖漁業發展,由於用水需求大增及地面水有限且供應不穩定,地下水抽用量則大幅提升,但大量超抽卻造成當地地層下陷及海水入侵,對水土資源造成相當大的損失。
前人研究中,利用地下水數值模式模擬地層下陷及地下水鹽化問題是最常見之方式,但當研究者並未對地層下陷造成之影響加以考慮,這些模式將無法準確地預測長期的地下水鹽化狀況,同時,也將無法準確地評估各種整治方法的效果。因此,本研究將運用孔彈性理論及GMS套裝軟體之MODFLOW及MT3D模式建立屏東沿海地區之水流數值模式,在模式中額外考量地層下陷後改變的水力性質,經由率定及驗證之過程,分析其與未考慮之模式的誤差結果,並且設計一無整治及二個整治案例模擬,將兩模式作比較與討論。
就整治案例模擬結果來說,有無考慮壓密之模式,在未來鹽化預測及方案評估上皆有很大的差異。其中相同的是減抽方案的確可有效降低沿海地區之鹽化面積,且上游地區的整治對沿海的影響相對來得低,而沿海地區之抽水井則會較直接影響到氯鹽濃度的改變。
而在零方案的情況下,考慮壓密之模式的鹽化面積皆高於未考慮壓密之模式,若未來之模式並未考慮地層下陷之影響,將可能稍微低估未來的鹽化預測;對於沿海整治來說,若沒有考慮壓密很有可能在長期預測下錯估成效。
Coastal and inland aquaculture fisheries flourish in the Pingtung Plain result in groundwater salinization pollution in coastal areas. In the previous studies, the use of groundwater numerical model of groundwater salinization was the most common way, while the researchers did not consider the impact of land subsidence, these models would not be able to accurately predict long-term groundwater salinization, and meanwhile, these models would not be able to accurately assess the effect of various remediation methods, too. MODFLOW groundwater model is used in this study with its sub-modes MT3D to simulate Pingtung coastal area groundwater condition, and consider the change of hydrogeological properties after land subsidence additionally. To quantize the change of hydrogeological properties, the theory of poroelasticity will be used. Via the process of calibration and verification, and different scenarios to predict the salinization, the model which considered the consolidation and the one did not would be analyze.
The remediation strategy can reduce the area of salinization effectively. The model did not considered the consolidation improves the area of salinization is relatively significant due to the value of hydraulic conductivity stay fixed, and there won’t have great change in flow conditions. Meanwhile, the hydraulic conductivity of the model considered the consolidation is gradually become smaller, it means the flow conditions not be so well, and the effect of the remediation is reduced.
The results show that there are great differences between the model considered the consolidation and the one did not. In the prediction of salinization, taking no account of consolidation might underestimate the extent of salinization, therefore, taking into account the impact of land subsidence is essential.
1. 王煒傑(2012),「結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域」,國立中央大學應用地質研究所碩士論文
2. 江崇榮, et al. (2002).,台灣地區地下水觀測網第一期計畫屏東平原水文地質調查研究總報告,經濟部中央地質調查所
3. 江崇榮、汪中和(2002),以氫氧同位素組成探討屏東平原之地下水補注源,經濟部中央地質調查所彙刊,第十五號,pp49-67
4. 江崇榮、陳瑞娥(2004),屏東平原地下水水源保護區劃定之芻議,經濟部中央地質調查所彙刊,第十七號,pp1-19
5. 江崇榮、黃智昭、陳瑞娥、費立沅(2004),屏東平原地下水補注量及抽水量之評估,經濟部中央地質調查所彙刊,第十七號,pp21-51
6. 李哲瑋(2015),「毛細張力變化對膨脹波在未飽和孔彈性隙介質中傳波特性之影響評估」,國立成功大學水利及海洋工程研究所博士論文
7. 李振誥、許清荃(2000),「地下水資源調配與管理-以濁水溪沖積扇為案例」,水資源管理,第8卷,pp24-31
8. 李振誥、許清荃、林俶寬(2000),「濁水溪沖積扇多層地下水調配與管理之研究」,臺灣水利,48(3),pp41-52
9. 杜凱立(2004),「田間地下水補注量對防止沿海地區鹽化問題之研究」,臺灣大學土木工程學研究所學位論文
10. 邱筱筠(2008),「雲林虎尾灌區水資源調配與管理之研究」,國立成功大學資源工程研究所碩士論文
11. 侯伊浩(2010),「應用地層下陷模式探討地下水位與地層下陷量相關性之研究」,國立成功大學資源工程研究所碩士論文
12. 唐靖雅、謝平城(2012),水流流經草地之水理分析,Journal of Chinese Soil and Water Conservation, 43(2), 158-166
13. 徐啟洋(2014),「應用孔彈性理論分析單層週期性載重及三層固定載重下之飽和土壤壓密行為」,國立成功大學水利及海洋工程研究所碩士論文
14. 張弼舜、張良正(2011),應用專家系統於穩健型地下水參數 參數 檢定模式之發展,國立交通大學土木工程研究所碩士論文
15. 許澤善(1997),雲林地區地層下陷之預測,地下水觀測網暨地層下陷防治計畫成果發表會論文集,pp.167-182
16. 陳昀萱(2014),「屏東平原沿海地區鹽化問題之模擬及整治策略之研究」,國立成功大學水利及海洋工程研究所碩士論文
17. 陳國彥(1982),屏東縣林邊佳冬枋寮地區地層下陷與海水倒灌之初步探討,國立臺灣師範大學地理研究報告
18. 彭宗仁(2000),屏東沿海地區地下水水質之鹽化趨勢,土壤與環境,3(4),pp353-362
19. 黃安斌(2001),台灣中部地區顆粒性土壤之動態行為以及其液化評估試驗方法之選擇,台灣中部地區液化潛能評估研討會論文集,經濟部水利署,A-4-A-27
20. 黃佳雯(2005),「地下水模式工具於污染控制場址範疇界定之研析」,國立臺灣大學環境工程學研究所碩士論文
21. 黃智昭、江崇榮、賴慈華(1998),屏東平原水文地質架構及地下水系統概念模型,屏東平原地下水及水文地質研討會論文集
22. 黃薇儒(2006),「屏東平原地下水鹽化情形探討」,臺灣大學環境工程學研究所學位論文
23. 楊亞欣(2013),「濁水溪沖積扇地下水與地層下陷聯合運用模擬與分析」,國立成功大學資源工程研究所碩士論文
24. 楊庭雅(2011),「關渡平原地下水流動模擬」,國立中央大學應用地質研究所碩士論文
25. 葉一隆、林俊男(1997),一維地下水密度變化之海水入侵數值模擬,農業工程學報,43(2),pp29-38
26. 劉致翔(2011),「地下水補注對沿海含水層海水入侵整治之數值分析」,國立成功大學水利及海洋工程研究所碩士論文
27. 簡俊彥(1987),台灣沿海地區地層下陷問題,地工技術,第20期,pp50-56
28. 蔡振源(1981),「沿海地區海水入侵之數學模式」,國立臺灣大學農業工程學研究所碩士論文
29. 戴宏育(2013),「沿海地區海水入侵之數值研究-以屏東平原為例」,國立 成功大學水利及海洋工程研究所碩士論文
30. AL-Fatlawi, A. N. (2011), The application of the mathematical model (MODFLOW) to simulate the behavior of groundwater flow in Umm Er Radhuma unconfined aquifer, Euphrates Journal of Agriculture Science-3 (1), pp1-16.
31. Badon-Ghyben, W. (1888). Notes on the probable results of well drilling near Amsterdam. Tijdschrift van het Koninklijk Inst. van Ing. Den Haag, 21.
32. Bear, J., & Dagan, G. (1964). Some exact solutions of interface problems by means of the hodograph method. Journal of Geophysical Research, 69(8), 1563-1572.
33. Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of applied physics, 33(4), 1482-1498.
34. Biot, M. A., & Willis, D. G. (1957). The Theory of Consolidation. J. Appl Elastic Coefficients of the Mech, 24, 594-601.
35. Bulavin, P. E., & Kashcheev, V. M. (1965). Solution of the non-homogeneous heat conduction equation for multilayered bodies(Inhomogeneous thermal conductivity equation for multilayer plates, cylinders and spheres). International Chemical Engineering, 5, 112-115.
36. Davison, R. M., & Lerner, D. N. (2000). Evaluating Natural Attenuation of Groundwater Pollution from a Coal‐Carbonisation Plant: Developing a Local‐Scale Model using MODFLOW, MODTMR and MT3D. Water and Environment Journal, 14(6), 419-426.
37. De La Cruz, V., Sahay, P. N., & Spanos, T. J. T. (1993, October). Thermodynamics of porous media. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 443, No. 1917, pp. 247-255). The Royal Society.
38. Domenico, P. A. (1972). Concepts and models in groundwater hydrology.
39. Gingerich, S. B., & Voss, C. I. (2005). Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA. Hydrogeology Journal, 13(2), 436-450.
40. Gottardi, G., & Venutelli, M. (1994). One‐Dimensional Moving Finite‐Element Model of Solute Transport. Groundwater, 32(4), 645-649.
41. Hatamleh, R. I. (2001). Using ModFlow and MT3D groundwater flow and transport models as a management tool for the Azraq Groundwater system. Master Thesis, Civil Engineering Department, Jordan University of Science and Technology, Irbid, Jordan.
42. Huang, L. H., & Chwang, A. T. (1990). Trapping and absorption of sound waves II a sphere covered with a porous layer. Wave Motion, 12(5), 401-414.
43. Langevin, C. D., Shoemaker, W. B., & Guo, W. (2003). MODFLOW-2000, the US Geological Survey Modular Ground-Water Model--Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT) (No. 2003-426).
44. Lautz, L. K., & Siegel, D. I. (2006). Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Advances in Water Resources, 29(11), 1618-1633.
45. Love AEH. (1934). A treatise on the mathematical theory of elasticity. Cambridge: Cambridge University Press.
46. Lo, W. C., Sposito, G., & Majer, E. (2002). Immiscible two-phase fluid flows in deformable porous media. Advances in water resources, 25(8), 1105-1117.
47. Lo, W. C., Yeh, C. L., & Tsai, C. T. (2007). Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions.Journal of hydrology, 338(3), 273-284.
48. Pride, S. R., Gangi, A. F., & Morgan, F. D. (1992). Deriving the equations of motion for porous isotropic media. The Journal of the Acoustical Society of America, 92(6), 3278-3290.
49. Rahmawati, N., Vuillaume, J. F., & Purnama, I. L. S. (2013), Salt intrusion in Coastal and Lowland areas of Semarang City. Journal of Hydrology, 494, pp 146-159.
50. Schiffman, R. L., and J. R. Stein (1970), One-dimensional consolidation of layered systems, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 96, no. 4, pp. 1499-1504.
51. Shammas, M. I. (2008), The effectiveness of artificial recharge in combating seawater intrusion in Salalah coastal aquifer, Oman. Environmental geology, 55(1), 191-204.
52. Terzaghi, K. (1925). Principles of soil mechanics, IV—Settlement and consolidation of clay. Engineering News-Record, 95(3), 874-878.