簡易檢索 / 詳目顯示

研究生: 賴冠岑
Lai, Guan-Cen
論文名稱: 窄渠中表面波以及水砂混合流體侵蝕率之探討
Study on Surface Wave Pattern and Erosion Rate over Erodible Bed in a Narrow Rectangular Straight Chute
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 192
中文關鍵詞: 粒子影像測速法正交分解表面波動床侵蝕率
外文關鍵詞: Buckingham theorem, PIV, surface wave pattern, erosion rate
相關次數: 點閱:181下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的在於探討夾砂水流中底床侵蝕與堆積之機制及其發展過程。利用π理論之變數分析,找出水砂混合流體之流場中最重要的無因次參數,並將侵蝕率與流場條件關聯。為了能精確的量測水砂混合流體之速度場分佈,實驗於矩形窄渠中進行,以避免三維的流動現象。實驗中加入堰體並以不同的渠道傾角進行觀測,以高速攝影機記錄非穩態的水砂混合流體之動床變化過程,並以粒子影像測速法(Digital Particle Image Velocimetry,DPIV)分析其速度場。
    窄渠中會有表面波產生,此現象使得液面流速減緩。本研究藉由觀測及分析純水中的表面波現象,以理解此波之物理機制。此外更進一步的推導出本研究之穩定表面波型式並解析之。PIV分析之速度場結構代入POD進行計算,找出表面波對流場流動的特徵影響,以解釋表面波液面流速較緩之因素。
    透過實驗之分析可知,動床之混合層速度分佈近似線性,而根據此分佈型態,本研究提出新的底床啟動條件。此外本研究之侵蝕式沿續Li and Duffy (2011),顆粒沉降與底床侵蝕能同時發生之概念,將π因子與混合層沉降及新底床啟動條件結合,成為本研究之π理論侵蝕式。本文中最重要的π因子有: (1)底床顆粒之黏滯力與慣性力之比值(NBag-1,考量間隙流體的黏度);(2)底床顆粒之重力與慣性力之比值(NSav-1,考量顆粒間的碰撞);(3)混合層厚度與整體水深之比值;(4)清水層平均流速與混合層界面流速之比值(考量深度方向的速度分佈並不均勻)。

    This study aims at the erosion/deposition mechanism at the bottom of the water-sediment mixture flows. With the help of Buckingham π-theorem, we figured out the relevant π-terms and the physically insignificant variables are isolated. Experiments were performed in a narrow channel, of which the inclination angle is adjustable. Apart from clear water, sand-water mixture was used. Types were considered: with weir and without weir at the end of the channel. In experiments, we focus on a) the process of erosion and deposition; and b) velocity profile. The particle image velocimetry (PIV) technique with software PIVlab was employed to analyze the high-speed camera captured images. In the present study, it is found that the most important π factors are a) the Bagnold number (the viscosity of the interstitial fluid); b) the Savage number (collision of the grains); c) the sediment volumetric concentration at the bottom and the ratio of mixture layer thickness to total water depth; d) the velocity distribution along the flow thickness. We also found that the piecewise-linear velocity profile is applicable. Hence, based on the assumption of piecewise-linear velocity profile and the analysis of Buckingham π-theorem, an erosion-deposition formulation is proposed, which was then validated against the channel experiments. In addition, surface wave pattern was observed in experiments, where the wave is not symmetrical in the lateral direction and it is not generated by the hydraulic jump in front of the weir. As no wave generator is used at the upstream section, a simple linear theory with surface tension, suggested by Dr. C.Y. Kuo at Academia Sinica, is introduced. The theoretical prediction was compared with the experimental measurement, where sound agreement is obtained.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 7 1.3.1 表面波 7 1.3.2 水躍 10 1.3.3 土砂災害 13 1.3.4 侵蝕率 15 1.4 研究方法 16 1.5 本文架構 17 第二章 實驗規劃與分析方法 19 2.1 實驗儀器配置與實驗材料 19 2.2 實驗參數與代號 24 2.3 粒子影像測速法 (DPIV) 25 2.4 速度場分析步驟 26 2.5 正交分解 (POD) 31 第三章 表面波模型 33 3.1 線性理論與表面波型式 33 3.2 穩定表面波實驗 36 3.2.1 實驗內容與步驟 36 3.2.2 水面波形回歸 38 3.2.3 速度場分布 41 3.2.4 流場之正交分解 48 3.2.5 理論與實驗討論 61 3.3 水躍實驗 65 3.3.1 實驗內容與步驟 65 3.3.2 速度場分布 66 3.3.3 震盪頻率 73 3.4 本章整理 75 第四章 水砂混合流體 76 4.1 土砂流理論 76 4.2 河道侵淤實驗 80 4.2.1 實驗內容與步驟 80 4.2.2 速度場分布 82 4.2.3 底床變化與侵蝕率 94 4.3 堰體侵淤實驗 102 4.3.1 實驗內容與步驟 102 4.3.2 速度場分布 105 4.3.3 底床變化與侵蝕率 118 4.4 本章整理 124 第五章 侵蝕率探討 125 5.1 侵蝕機制的啟動條件 125 5.2 流況改變對啟動條件之影響 133 5.3 白金漢Π定理(BUCKINGHAM Π-THEOREM) 135 5.4 最佳侵蝕率 137 5.4.1 同步最佳化 138 5.4.2 分段最佳化 139 5.5 實驗討論 140 5.5.1 不含邊壁效應之計算結果 140 5.5.2 含邊壁效應之計算結果 146 5.6 流況改變對侵蝕率之影響 154 5.6.1 不含邊壁效應之侵蝕率影響 154 5.6.2 含邊壁效應之侵蝕率影響 158 5.7 本章整理 164 第六章 結論與建議 166 6.1 結論 166 6.2 未來展望與建議 168 參考文獻 169 附錄 182 A.1 EINSTEIN’S FORMULA 182 A.2 線性理論 186 A.2.1 Non-wavy component 187 A.2.2 Wavy component 187 A.3 啟動機制之比較 188 A.4 地形與表面波間之關聯 190 A.5 底床濃度對侵蝕及堆積率之影響 191

    [1] Armanini, A., Capart, H., Fraccarollo, L., Larcher, M. (2005). “Rheological stratification in experimental free-surface flows of granular-liquid mixtures.” J. Fluid Mech. 532, pp. 269-319.
    [2] Boussinesq, J. (1872). “Theory of waves and disturbances propagating along a rectangular horizontal channel, generating nearly uniform velocities from the surface to the bottom.” J. Mathématique Pures et Appliqués, Série 2, 17, 55-108 [in French].
    [3] Brock, R. R. (1967). “Development of roll waves in open channels.” PhD thesis, California Institute of Technology, Pasadena, California.
    [4] Berkooz, G., Holmes, P., Lumley, J. L. (1993). “The proper orthogonal decomposition in the analysis of turbulent flows.” Annu. Rev. Fluid Mech. 25, 539-575.
    [5] Baby, X., Dupont, A., Ahmed, A., Deslandes, W., Charnay, G. and Michard, M. (2002). “A new methodology to analyze cycle-to-cycle aerodynamic variations.” SAE Technical Paper 2002-01-2837.
    [6] Balmforth, N. J. and Mandre, S. (2004). “Dynamics of roll waves.” J. Fluid Mech, vol. 514, pp. 1-33.
    [7] Baines, P. (2005). “Mixing regimes for the flow of dense fluid down slopes into stratified environments.” J. Fluid. Mech., 538, 245-267.
    [8] Bongolan-Walsh, V. P., Duan, J., Fischer, P. F., Ozgokmen, T., Iliescu, T. (2007). “Impact of boundary conditions on entrainment and transport in gravity currents.” J Appl Math Modell, 31(7):1338-50.
    [9] Breien, H., De Blasio, F. V., Elverhoi, A., Hoeg, K. (2008). “Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway.” Landslides 5: 271-280.
    [10] Berzi, D., Jenkins, J. T., Larcher, M. (2010). “Debris flows: Recent advances in experiments and modeling.” Adv. Geophys., 52, 103-138.
    [11] Berger, C., McArdell, B. W., Schlunegger, F. (2011). “Direct measurement of channel erosion by debris flows, Illgraben, Switzerland.” Journal of Geophysical Research, vol. 116.
    [12] Chow, V. T. (1959). “Open channel hydraulics.” New York: McGraw-Hill Book Company, Inc.
    [13] Chanson, H., Montes, J. S. (1995). “Characteristics of undular hydraulic jumps: Experimental apparatus and flow patterns.” J. Hydraulic Engng. 121(2), 129-144; 123(2), 161-164.
    [14] Chanson, H., Brattberg, T. (2000). “ Experimental study of the air-water shear flow in a hydraulic jump. ” Int. J. Multiphase Flow 26, 583-607.
    [15] Chanson, H. (2010). “Convective transport of air bubbles in strong hydraulic jumps.” Intl J. Multiphase Flow 36, 798-814.
    [16] Citriniti, J. H., George, W. K. (2000). “Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition.” J. Fluid Mech. 418, 137-166.
    [17] Chatterjee, A. (2000). “An introduction to the proper orthogonal decomposition.” Current Science, vol, 78, NO. 7, 10.
    [18] Cao, Z., Pender, G., Wallis, S., Carling, P. (2004). “Computational dam-break hydraulics over erodible sediment bed.” J. Hydraul. Eng., 130, 689-703.
    [19] Crosta, G. B., Imposimato, S., Roddeman, D. (2009a). “Numerical modeling entrainment/deposition in rock and debris‐avalanches.” Eng. Geol.,109, 135-145.
    [20] Castro-Orgaz, O. (2010b). “Approximate modeling of 2D curvilinear open channel flows.” J. Hydraulic Research 48(2), 213-224.
    [21] Castro-Orgaz, O., Hutter, K., Giráldez, J. V., Hager, W. H. (2015). “Non-hydrostatic granular flow over 3D terrain: New Boussinesq-type gravity waves.” J. Geophysical Research-Earth Surface 120(1), 1-28.
    [22] Chen, H., Reuss, D. L., Sick, V. (2012). “On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows.” Meas. Sci. Technol. 23, 085302.
    [23] Chen, H., Cui, P., Zhou, G. G. D., Zhu, X., Tang, J. (2014). “Experimental study of debris flow caused by domino failures of landslide dams.” International Journal of Sediment Research, 29, 414-422.
    [24] Cartigny, M. J. B., Ventra, D., Postma, G., van den Berg, J. H. (2014). “Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions.” New insights from flume experiments. Sedimentology, 61, 712–748.
    [25] Cabrera, M. A., Gollin, D., Kaitna, R., Wu, W. (2015). “Viscous Effects on Granular Mixtures in a Rotating Drum.” In: Recent Advances in Modeling Landslides and Debris Flows. Ed. by W. Wu. Springer Series in Geomechanics and Geoengineering. Springer International Publishing, pp. 57-71.
    [26] Davies, T. R. H. (1990). “Debris-flow surges - Experimental simulation.” J. Hydrol. (New Zealand), 29: 1X-46.
    [27] Denlinger, R. P., Iverson, R. M. (2001). “Flow of variably fluidized granular material across three-dimensional terrain: 2. Numerical predictions and experimental tests.” J. Geophys. Res. 106, 553-566.
    [28] Druault, P., Guibert, P., Alizon, F. (2005). “Use of proper orthogonal decomposition for time interpolation from PIV data: application to the cycle-to-cycle variation analysis of in-cylinder engine flows Exp.” Fluids, 39, 15.
    [29] Einstein, H. A. (1942). “Formulas for the transportation of bed load.” Trans. Am. Soc. Civ. Eng., 107(1), 561–597.
    [30] Einstein, H. A. (1950). “The bed-load function for sediment transportation in open channel flows.” U.S. Dept. Agric., Soil Conserv. Serv., T. B. no. 1026.
    [31] Egashira, S. (1993a). “Mechanism of sediment deposition from debris flow (part1).” Journal of the Japan Society of Erosion Control Engineering 46(1), ser.186: 45-49 (in Japanese).
    [32] Egashira, S., Honda, N., Itoh, T. (2001). “Experimental study on the entrainment of bed material into debris flow.” Physics and Chemistry of the Earth (C) 26 (9), 645-650.
    [33] Fawer, C. (1937). “Study of some steady flows with curved streamlines.” Thesis. Université de Lausanne. La Concorde, Lausanne, Switzerland [in French].
    [34] Fraccarollo, L., Capart, H. (2002). “Riemann wave description of erosional dam-break flows.” J. Fluid Mech., 461, 183-228.
    [35] Fraccarollo, L., Larcher, M., Armanini, A. (2007). “Depth-averaged relations for granular-liquid uniform flows over mobile bed in a wide range of slope values.” Granular Matter 9, 145-157.
    [36] Fogleman, M., Lumley, J. L., Rempfer, D., Haworth, D. (2004). “Application of the proper orthogonal decomposition to datasets of internal combustion engine flows.” J. Turbul. 5, 023.
    [37] Gray, J. M. N. T., Wieland, M., Hutter, K. (1999). “Gravity driven free surface flow of granular avalanches over complex basal topography.” Proc. R. Soc. London, Ser. A, 455, 1841-1874.
    [38] Gregoretti, C. (2000). “The initiation of debris flow at high slopes: experimental results.” J Hydraul Res 38(2): 83-88.
    [39] Guo, J., Julien, P. Y. (2001). “Turbulent velocity profiles in sediment-laden flows.” Journal of Hydraulic Research, IAHR, vol. 39, No. 1, pp. 11-23.
    [40] Gotoh, H., Yasuda, Y., Ohtsu, I. (2005). “Effect of channel slope on flow characteristics of undular hydraulic jumps.” Trans. Ecology and Environment 83(1), 33-42.
    [41] George, D. L., Iverson, R. M. (2014). “A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests.” Proc. R. Soc. London, Ser. A, 470.
    [42] Hager, W. H., Bremen, R. (1989). “Classical hydraulic jump: sequent depths.” J. Hydraul. Res. 27(5), 565-585.
    [43] Hager, W. H., Bremen, R., Kawagoshi, N. (1990). “Classical hydraulic jump: length of roller.” J. Hydraul. Res. 28(5), 591-608.
    [44] Hutter, K., Siegel, M., Savage, S. B., Nohguchi, Y. (1993). “Two-dimensional spreading of a granular avalanche down an inclined plane. I. Theory.” Acta Mech. 100, 37-68.
    [45] Holmes, P., Lumley, J. L., Berkooz, G. (1998). “Turbulence, coherent structures, dynamical systems and symmetry.” Cambridge University Press.
    [46] Hui, W. H. (2004). “A unified coordinates approach to computational fluid dynamics.” J. Comp. Applied Math. 2004, 163, 15-28.
    [47] Hsu, L., Dietrich, W. E., Sklar, L. S. (2008). “Experimental study of bed-rock erosion by granular flows.” J. Geophys. Res., 113.
    [48] Hashimoto, H. (2010). “土砂の移動現象とそのメカニズム.”日本流体力学会誌「ながれ」, pp. 193-202.
    [49] Hotta, N. (2012). “Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel.” Nat. Hazard s Earth Syst. Sci.,12, 2499-2505.
    [50] Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E., Brien, D. L. (2000). “Acute Sensitivity of Landslide Rates to Initial Soil Porosity.” Science, vol. 290.
    [51] Iverson, R. M. (2003). “The debris-flow rheology myth.” in: C.L. Chen, D. Rickenmann (Eds.), Debris flow Mechanics and Mitigation Conference, Mills Press, Davos, 2003, pp. 303-314.
    [52] Iverson, R. M., Logan, M., LaHusen, R. G., Berti, M. (2010). “The perfect debris flow? Aggregated results from 28 large‐scale experiments.” J. Geophys. Res., 115.
    [53] Iverson, R. M. (2015). “Scaling and design of landslide and debris-flow experiments.” Geomorphology 244, 9-20.
    [54] Keane, R. D., Adrian, R. J. (1993). “Theory and Simulation of Particle Image Velocimetry.” Department of Theoretical and Applied Mechanics University of Illinois at Urbana-Champaign Urbana, Illinois 61820.
    [55] Kho, S., Baker, C., Hoxey, R. (2002). “POD/ARMA reconstruction of the surface pressure field around a low rise structure.” J. Wind Eng. Ind. Aerodyn. 90, 1831-1942.
    [56] Kerschen, G., Golinval, J. C., Vakakis, A. F., Bergman, L. A. (2005). “The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview.” Springer, Nonlinear Dynamics, 41, 147-169.
    [57] Kaitna, R., Rickenmann, D. (2007). “A new experimental facility for laboratory debris flow investigation.” J. Hydraul Res. 45 (6), 797-810.
    [58] Kaitna, R., Dietrich, W. E., Hsu, L. (2014). “Surface slopes, velocity profiles and fluid pressure in coarse-grained debris flows saturated with water and mud.” J. Fluid Mech. 741, 377-403.
    [59] Lane, E. W. (1952). “Progress report on results of studies on design of stable channels.” U.S. Bur. Reclamation, Hydraulic Lab. Rept., Hyd-352, pp. 36.
    [60] Liu, Q. C., Uwe, D. (1994). “Turbulence characteristics in free and forced hydraulic jumps.” Journal of hydraulic research, 32(6), 877-898.
    [61] Li, S., Duffy, C. J. (2011). “Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers.” Water Resour.Res., vol. 47.
    [62] Lam, K. M. (2013). “Application of POD analysis to concentration field of a jet flow.” Journal of Hydro-environment Research, 7, 174-181.
    [63] Manning, R. (1890). “Flow of water in open channels and pipes.” Trans. Inst. Civil Engrs. (Ireland), 20.
    [64] Major, J. J., Pierson, T. C. (1992). “Debris flow rheology: Experimental analysis of fine-grained slurries.” Water Resour. Res., 28, 841-857.
    [65] Montes, J. S., Chanson, H. (1998). “Characteristics of undular hydraulic jumps: Results and calculations.” J. Hydr. Engng. 124(2), 192-205.
    [66] Mambretti, S., Larcan, E., De Wrachien, D. (2007). “Debris flow and dam-break surges: Experimental analysis and two-phase modelling.” Quaderni di Idronomia Montana, 27, pp. 447-462.
    [67] Meyer, K. E., Cavar, D., Pedersen, J. M. (2007). “POD as tool for comparison of PIV and LES data.” 7th International Symposium on Particle Image Velocimetry.
    [68] Meyer, K. E., Sørensen, J. N., Mikkelsen, R., Watz, B. B. (2008). “Frequency and flow structure detection in a cylindrical cavity using POD.” 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 07-10.
    [69] Macdonald, R. G., Alexander, J., Bacon, J. C., Cooker, M. J. (2009). “Flow patterns, sedimentation and deposit architecture under a hydraulic jump on a non-eroding bed: defining hydraulic-jump unit bars.” Sedimentology, 56, 1346-1367.
    [70] Meruane, C., Tamburrino, A., Roche, O. (2010). “On the role of the ambient fluid on gravitational granular flow dynamics.” J. Fluid Mech. 648, 381-404.
    [71] McCoy, S. W., Kean, J. W., Coe, J. A., Tucker, G. E., Staley, D. M., Wasklewicz, T. A. (2012). “Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment.” Journal of Geophysical Research, vol. 117.
    [72] Nakatani, K. (2010). “GUIを実装した汎用土石流数値シミュレーションシステムの開発と適用.” Kyoto University Research Information Repository, PhD thesis.
    [73] Nourmohammadi, Z., Afshin, H., Firoozabadi, B. (2011). “Experimental observation of the flow structure of turbidity currents.” J. Hydraulic Res. 49(2), 168-177.
    [74] Omid, M. H., Nasrabadi, M., Farhoudi, J. (2011). “Suspended sediment effects on hydraulic jump characteristics.” Proceedings of the Institution of Civil Engineers (ICE), Journal of water management, vol. 164, No. 2, pp. 91-101.
    [75] Peregrine, D. H. (1966). “Calculations of the development of an undular bore.” J. Fluid Mech, 25(2), 321-330.
    [76] Pedersen, J. M. (2003). “Analysis of planar measurements of turbulent flows.” PhD thesis, Department of Mechanical Engineering, Technical University of Denmark.
    [77] Papa, M., Egashira, S., Itoh, T. (2004). “Critical conditions of bed sediment entrainment due to debris flow.” Natural Hazards and Earth System Sciences 4, 469-474.
    [78] Prochaska, A. B., Santi, P. M., Higgins, J. D., Cannon, S. H. (2008). “A study of methods to estimate debris flow velocity.” Landslides 5: 431-444.
    [79] Princevas, M., Buhler, J., Schleiss, A. J. (2009). “Mass-based depth and velocity scales for gravity currents and related flows.” Environ. Fluid Mech. 9, 369-387.
    [80] Pokhrel, P. R. (2014). “General phase-eigenvalues for two-phase mass flows: Supercritical and subcritical states.” M. Phil. dissertation, Kathmandu Univ., School of Science, Kavre, Dhulikhel, Nepal.
    [81] Russell, J. S. (1845). “Report on waves.” 14th Meeting of the British Association for the Advancement of Science York, 311-390.
    [82] Reid, M. E., LaHunsen, R. G., Iverson, R. M. (1997). “Debris flow initiation experiments using diverse hydrologic triggers.” In Debris Flow HazardsMitigation: Mechanics, Prediction and Assessment, Chen CL (ed.). ASCE Proceedings. ASCE: 1-11.
    [83] Richard, G. L., Gavrilyuk, S. L. (2012). “A new model of roll waves: comparison with Brock’s experiments.” J. Fluid Mech, vol. 698, pp. 374-405.
    [84] Richard, G. L., Gavrilyuk, S. L. (2013). “The classical hydraulic jump in a model of shear shallow-water flows.” J. Fluid Mech, vol. 725, pp. 492-521.
    [85] Strickler, A. (1923). “Some contributions to the problem of the velocity formula and roughness factors for rivers, canals, and closed conduits.” Bern, Switzerland, Mitt. Eidgeno assischen Amtes Wasserwirtschaft, no. 16.
    [86] Serre, F. (1953). “Contribution to the study of steady and unsteady channel flows.” La Houille Blanche 8(6-7), 374-388; 8(12), 830-887 [in French].
    [87] Savage, S. B. (1979). “Gravity flow of cohesionless granular materials in chutes and channels.” Journal of Fluid Mechanics 92, 53-96.
    [88] Savage, S. B., Hutter, K. (1989). “The motion of a finite mass of granular material down a rough incline.” Fluid Mech., 199, 177-215.
    [89] Smart, G. M. (1984). “Sediment transport formula for steep channels.” J. Hydraul. Eng., 10.1061/(ASCE) 0733-9429 110:3(267), 267–276.
    [90] Sirovich, L. (1987). “Turbulence and the dynamics of coherent structures. Part 1: coherent structures.” Quart. Appl. Math. 45, 561-571.
    [91] Strang, E. J., Fernando, H. J. S. (2001a). “Entrainment and mixing in stratified shear flows.” J. Fluid Mech., 428, 349-386.
    [92] Spinewine, B., Zech, Y. (2007). “Small-scale laboratory dam-break waves on movable beds.” J. Hydraul. Res. 45 (Extra Issue), 73–86.
    [93] Spinewine, B., Capart, H. (2013). “Intense bed-load due to a sudden dam-break.” Journal of Fluid Mechanics, 731, 579-614.
    [94] Shim, Y. M., Sharma, R. N., Richards, P. J. (2013). “Proper orthogonal decomposition analysis of the flow field in a plane jet.” Experimental Thermal and Fluid Science 51, 37-55.
    [95] Sarno, L., Papa, M. N., Tai, Y. C., Carravetta, A., Martino, R. (2014). “A reliable PIV approach for measuring velocity profiles of highly sheared granular flows.” 7th International Conference on Engineering Mechanics, Structures, Engineering Geology.
    [96] Stancanelli, L. M., Lanzoni, S., Foti, E. (2015). “Propagation and deposition of stony debris flows at channel confluences.” Water Resource. Res., 51, 5100-5116.
    [97] Takahashi, K. (1984). “土石流の流れ学.” 日本流体力学会誌「ながれ」, pp. 307-317.
    [98] Takahashi, T., Kuang, S. F. (1986). “Formation of debris flow on varied slope bed.” Annuals Disaster Prevention Research Institute, Kyoto Univ., 29B-2, 343-359, 1986 (in Japanese).
    [99] Takahashi, T. (2007). “Debris flows: mechanics, prediction and countermeasures.” Taylor and Francis. Balkema, pp. 448.
    [100] Tai, Y. C., Noelle, S., Gray, J. M. N. T., Hutter, K. (2002). “Shock-capturing and front-tracking methods for granular avalanches.” J. Comput. Phys., 175,269–301.
    [101] Tai, Y. C., Kuo, C. Y. (2008). “A new model of granular flows over general topography with erosion and deposition.” Acta Mech., 199, 71-96.
    [102] Tai, Y. C., Cheng, C. K., Lai, G. C. (2016). “An Approach to Adaptive Correction Factors in Depth-Averaged Model for Debris Flows.” EGU General Assembly, p. 11806.
    [103] Talling, P. J., Wynn, R. B., Masson, D. G., Frenz, M., Cronin, B. T., Schiebel, R., Akhmetzhanov, A. M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P. P. E., Georgiopoulou, A., Zuhlsdorff, C., Amy, L. A. (2007). “Onset of submarine debris flow deposition far from original giant landslide.” Nature, vol. 450.
    [104] Thielicke, W. (2014). “The Flapping Flight of Birds.” University of Groningen, PhD thesis.
    [105] Thielicke, W., Stamhuis, E. J. (2014). “PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB.” Journal of open research software, 30, 2-30.
    [106] Whitham, G. B. (1974). “Linear and Nonlinear Waves.” Wiley.
    [107] Zhou, J. G., Stansby, P. K. (1999). “2D shallow water flow model for the hydraulic jump.” International Journal for Numerical Methods in Fluids, 29(4), 375-387.
    [108] Zee, C. H., Zee, R. (2016). “Formulas for the Transportation of Bed Load.” P. E., M. ASCE, 10.1061/(ASCE) HY.1943-7900.0001248.
    [109] 國島正彥. (2005). “韓国ソウル聖水大橋の崩落事故.” 失敗知識データベース-失敗百選.
    [110] 黃怡安. (2009). “意大利墨西拿土石流報導.” 大紀元10月4日訊, http://www.epochtimes.com/b5/9/10/4/n2678036.htm
    [111] 陳清泉., 李咸亨. (2010). “高雄縣甲仙鄉小林村、那瑪夏鄉及桃源鄉致災原因調查報告.” 中國土木水利工程學會, 識別號: 00028827.
    [112] 張豐年. (2011). “批判環評有條件通過-大安大甲溪水源聯合運用工程計劃案.” 台灣生態學會電子報, 第292期.
    [113] 梁惠儀., 林伯勳., 吳毓華., 卡艾瑋., 冀樹勇. (2013). “巴陵壩潰壩後對於石門水庫上游集水區河相變遷及沖淤演變影響模擬.” 中興工程季刊, 第119卷, pp. 19-30.
    [114] 陳宏宇., 張志新., 李香潔., 吳亭燁. (2014). “日本廣島土石流災害現勘-出國報告書.” 國家災害防救科技中心, 編號: NCDR-103-01-A-019.

    下載圖示 校內:2018-08-01公開
    校外:2018-08-01公開
    QR CODE