| 研究生: |
張芳瑜 Chang, Fang-Yu |
|---|---|
| 論文名稱: |
高性能常關型氧化鋅錫/氧化錫鍶雙主動層薄膜電晶體之研製 A Study of High Performance Zinc Tin Oxide and Strontium-Doped Tin Oxide Normally-off Double Active Layer Thin Film Transistor |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 氧化鋅錫 、二氧化錫 、超音波噴塗熱裂解沉積法 、負閘極照光偏壓測試 、循環噴退 、常關型 |
| 外文關鍵詞: | ZTO, SnO2, Ultrasonic Spray Pyrolysis Deposition, negative bias illumination stress test, multiple deposition/annealing method, normally-off |
| 相關次數: | 點閱:44 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇實驗是利用超音波噴塗熱裂解沉積法製備出雙主動層的氧化鋅錫以及二氧化錫摻鍶之薄膜電晶體。本論文的雙主動層薄膜電晶體在最好的厚度分配下,元件的線性區開關比可以達到~107、次臨界擺幅108.70 mV/dec、場效電子遷移率124.82 cm2/V-s、臨界電壓0.66 V以及3000秒的閘極負偏壓照光測試下的臨界電壓偏移為-0.16 V。
本實驗利用雙主動層的結構,不同厚度的氧化鋅錫與二氧化錫摻鍶薄膜,以及藉由快速熱退火和循環噴退的方式來提升元件的電性。此雙主動層的薄膜電晶體為下閘極的結構,我們利用氧化鋅錫作為下層的主動層,並當作主要傳輸載子的區域;上層的主動層為二氧化錫摻鍶,二氧化錫本身載子濃度很高,而鍶與氧的鍵結能力比錫與氧的鍵結能力強,因此我們藉由添加適當比例的鍶可以使二氧化錫中的氧空缺減少,使元件操作在關的時候通道更容易空乏,讓元件的操作為常關型的薄膜電晶體。
在本實驗當中,我們成功以超音波噴塗熱裂解沉積法製備出氧化鋅錫及二氧化錫摻鍶之薄膜電晶體,如此的薄膜沉積方式可以在非真空的環境下進行,並節省實驗成本與時間。此元件在電性方面表現出高電子遷移率、高開開關比、低次臨界擺幅等優點,且本研究中採用的主動層材料皆不含銦的成分,並用錫取代銦可以一樣讓載子達到快速傳輸的角色,目的是希望此薄膜能和氧化銦鎵鋅一樣有高遷移率,並改善使用銦會使成本提高的缺點,讓此結構的薄膜電晶體能夠在下一世代的大面積顯示器產業中極具潛力。
In this experiment, zinc tin oxide (ZTO) and strontium-doped tin oxide (SnO2:Sr) thin film transistors (TFTs) were fabricated by Ultrasonic Spray Pyrolysis Deposition (USPD) method. The TFTs with double active layers achieve an on/off ratio ~107 in linear region, subthreshold swing (S.S.) of 108.70 mV/dec, a field-effect electron mobility (μFE) of 124.82 cm2/V-s, a threshold voltage (Vth) of 0.66 V, and threshold voltage shift under the 3000-second gate negative bias illumination stress (NBIS) is -0.16V. These results were obtained using the optimal thickness distribution of the components.
In this experiment, we utilized a double active layer structure with different thicknesses of zinc tin oxide and strontium doped tin oxide films, rapid thermal annealing and multiple deposition / annealing method to enhance the electrical properties of the device. This double active layer thin film transistor was designed with a bottom gate structure. We utilized zinc tin oxide as the bottom active layer and as the primary carrier transport region. The top active layer was strontium-doped tin oxide, which has a high concentration of carriers. Since strontium has a stronger binding energy with oxygen than tin, we can reduce the number of oxygen vacancies in tin oxide by adding the appropriate amount of strontium. This makes the channel more susceptible to depletion when the device is turned off, enabling it to operate as a normally-off thin film transistor.
In this study, we successfully prepared zinc tin oxide and strontium-doped tin oxide thin films by ultrasonic spray pyrolysis deposition method. This method of thin film deposition can be carried out in a non-vacuum environment, which can save on experimental costs and time. This device exhibits high electron mobility, a high on/off ratio, and low subthreshold swing in electrical performance. Furthermore, the active layer materials utilized in this study do not contain indium. Substituting tin for indium can facilitate rapid carrier transport. The goal is to achieve high mobility comparable to that of indium gallium zinc oxide (IGZO) while addressing the issue of rising costs associated with the use of indium. The structure of thin film transistors has great potential in the next-generation large-area display industry.
[1] T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," NPG Asia Materials, vol. 2, no. 1, pp. 15-22, 2010, doi: 10.1038/asiamat.2010.5.
[2] S. D. Brotherton, "Polycrystalline silicon thin film transistors," SEMICONDUCTOR SCIENCE AND TECHNOLOGY, vol. 10, no. 6, pp. 721-738, 1995, doi: 10.1088/0268-1242/10/6/001.
[3] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances," Adv Mater, vol. 24, no. 22, pp. 2945-86, Jun 12 2012, doi: 10.1002/adma.201103228.
[4] Y. Zhu, Y. He, S. Jiang, L. Zhu, C. Chen, and Q. Wan, "Indium–gallium–zinc–oxide thin-film transistors: materials, devices, and applications," Journal of Semiconductors, vol. 42, no. 3, 2021, doi: 10.1088/1674-4926/42/3/031101.
[5] P.-K. Shin, Y. Aya, T. Ikegami, and K. Ebihara, "Application of pulsed laser deposited zinc oxide films to thin film transistor device," Thin Solid Films, vol. 516, no. 12, pp. 3767-3771, 2008, doi: 10.1016/j.tsf.2007.06.068.
[6] S. Weng et al., "High performance amorphous zinc tin oxide thin film transistors with low tin concentration," IEEE Journal of the Electron Devices Society, vol. 7, pp. 632-637, 2019, doi: 10.1109/jeds.2019.2919424.
[7] C. Avis, Y. Kim, and J. Jang, "Amorphous tin oxide applied to solution processed thin-film transistors," Materials (Basel), vol. 12, no. 20, Oct 14 2019, doi: 10.3390/ma12203341.
[8] I. Noviyana et al., "High mobility thin film transistors based on amorphous indium zinc tin oxide," Materials (Basel), vol. 10, no. 7, Jun 26 2017, doi: 10.3390/ma10070702.
[9] J. Dong et al., "Effect of Al doping on performance of ZnO thin film transistors," Applied Surface Science, vol. 433, pp. 836-839, 2018, doi: 10.1016/j.apsusc.2017.10.071.
[10] B. D. Ahn, H.-J. Jeon, J. Sheng, J. Park, and J.-S. Park, "A review on the recent developments of solution processes for oxide thin film transistors," Semiconductor Science and Technology, vol. 30, no. 6, 2015, doi: 10.1088/0268-1242/30/6/064001.
[11] C. W. Shih and A. Chin, "New material transistor with record-high field-effect mobility among wide-band-gap semiconductors," ACS Appl Mater Interfaces, vol. 8, no. 30, pp. 19187-91, Aug 3 2016, doi: 10.1021/acsami.6b04332.
[12] Y. Li et al., "Recent advances of solution-processed heterojunction oxide thin-film transistors," Nanomaterials (Basel), vol. 10, no. 5, May 18 2020, doi: 10.3390/nano10050965.
[13] T. Tynell and M. Karppinen, "Atomic layer deposition of ZnO: a review," Semiconductor Science and Technology, vol. 29, no. 4, 2014, doi: 10.1088/0268-1242/29/4/043001.
[14] W. Xu, H. Li, J. B. Xu, and L. Wang, "Recent advances of solution-processed metal oxide thin-film transistors," ACS Appl Mater Interfaces, vol. 10, no. 31, pp. 25878-25901, Aug 8 2018, doi: 10.1021/acsami.7b16010.
[15] V. K. Kaushik, C. Mukherjee, and P. K. Sen, "ZnO based transparent thin film transistor grown by aerosol assisted CVD," Journal of Materials Science: Materials in Electronics, vol. 29, no. 17, pp. 15156-15162, 2018, doi: 10.1007/s10854-018-9657-0.
[16] H.-Y. Liu, H.-C. Hung, and W.-T. Chen, "Deposition of c-axis aligned crystalline ingazno by mist atmospheric pressure chemical vapor deposition for thin-film transistor applications," IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4245-4249, 2020, doi: 10.1109/ted.2020.3016633.
[17] Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," nature, vol. 432, no. 7016, pp. 488-492, 2004, doi: 10.1038/nature03090.
[18] G. Zhuang, Y. Chen, Z. Zhuang, Y. Yu, and J. Yu, "Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design," Science China Materials, vol. 63, no. 11, pp. 2089-2118, 2020, doi: 10.1007/s40843-020-1305-6.
[19] X. Li, P. Li, F. Wei, X. Wang, W. Han, and J. Yue, "Effect of oxygen vacancies on the electronic structure and electrochemical performance of MnMoO4: computational simulation and experimental verification," New Journal of Chemistry, vol. 46, no. 4, pp. 1665-1676, 2022, doi: 10.1039/d1nj05085k.
[20] H. Yang et al., "Application of amorphous zirconium-yttrium-aluminum-magnesium-oxide thin film with a high relative dielectric constant prepared by spin-coating," Membranes (Basel), vol. 11, no. 8, Aug 10 2021, doi: 10.3390/membranes11080608.
[21] Y. Xu, X. Li, L. Zhu, and J. Zhang, "Defect modification in ZnInSnO transistor with solution-processed Al2O3 dielectric by annealing," Materials Science in Semiconductor Processing, vol. 46, pp. 23-28, 2016, doi: 10.1016/j.mssp.2016.02.001.
[22] H.-Y. Liu, W.-C. Hsu, J.-H. Chen, P.-H. Hsu, and C.-S. Lee, "Amorphous ITZO thin-film transistors by using ultrasonic spray pyrolysis deposition," IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1009-1013, 2020, doi: 10.1109/ted.2020.2965949.
[23] C.-F. Liu and T.-P. Perng, "Fabrication and band structure of Ag3PO4–TiO2 heterojunction with enhanced photocatalytic hydrogen evolution," International Journal of Hydrogen Energy, vol. 45, no. 1, pp. 149-159, 2020, doi: 10.1016/j.ijhydene.2019.10.182.
[24] S. Sanctis et al., "Toward an understanding of thin-film transistor performance in solution-processed amorphous zinc tin oxide (ZTO) thin films," ACS Appl Mater Interfaces, vol. 9, no. 25, pp. 21328-21337, Jun 28 2017, doi: 10.1021/acsami.7b06203.
[25] E. K.-H. Yu, P.-C. Lai, and J. Kanicki, "Photoluminescence study of amorphous InGaZnO thin-film transistors," IEEE Transactions on Electron Devices, vol. 65, no. 3, pp. 1258-1261, 2018, doi: 10.1109/ted.2018.2798823.
[26] S. Chacko, M. J. Bushiri, and V. K. Vaidyan, "Photoluminescence studies of spray pyrolytically grown nanostructured tin oxide semiconductor thin films on glass substrates," Journal of Physics D: Applied Physics, vol. 39, no. 21, pp. 4540-4543, 2006, doi: 10.1088/0022-3727/39/21/004.
[27] N. Tu et al., "Surface oxygen vacancies of ZnO: A facile fabrication method and their contribution to the photoluminescence," Journal of Alloys and Compounds, vol. 791, pp. 722-729, 2019, doi: 10.1016/j.jallcom.2019.03.395.
[28] H. J. Lee, T. Moon, S. D. Hyun, S. Kang, and C. S. Hwang, "Characterization of a 2D electron gas at the interface of atomic-layer deposited Al2O3/ZnO thin films for a field-effect transistor," Advanced Electronic Materials, vol. 7, no. 1, 2020, doi: 10.1002/aelm.202000876.
[29] K. K. Banger, R. L. Peterson, K. Mori, Y. Yamashita, T. Leedham, and H. Sirringhaus, "High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors," Chem Mater, vol. 26, no. 2, pp. 1195-1203, Jan 28 2014, doi: 10.1021/cm4035837.
[30] K. H. Ji et al., "Comprehensive studies of the degradation mechanism in amorphous InGaZnO transistors by the negative bias illumination stress," Microelectronic Engineering, vol. 88, no. 7, pp. 1412-1416, 2011, doi: 10.1016/j.mee.2011.03.069.
[31] D. Wang, M. P. Hung, J. Jiang, T. Toda, C. Li, and M. Furuta, "Effect of drain bias on negative gate bias and illumination stress induced degradation in amorphous InGaZnO thin-film transistors," Japanese Journal of Applied Physics, vol. 53, no. 3S1, 2014, doi: 10.7567/jjap.53.03cc01.
[32] M. R. Shijeesh, A. C. Saritha, and M. K. Jayaraj, "Investigations on the reasons for degradation of zinc tin oxide thin film transistor on exposure to air," Materials Science in Semiconductor Processing, vol. 74, pp. 116-121, 2018, doi: 10.1016/j.mssp.2017.10.015.
[33] M. H. Cho, C. H. Choi, and J. K. Jeong, "Comparative study of atomic layer deposited indium-based oxide transistors with a fermi energy level-engineered heterojunction structure channel through a cation combinatorial approach," ACS Applied Materials & Interfaces, vol. 14, no. 16, pp. 18646-18661, 2022, doi: 10.1021/acsami.1c23889.
[34] H. J. Seul et al., "Atomic layer deposition process-enabled carrier mobility boosting in field-effect transistors through a nanoscale ZnO/IGO heterojunction," ACS Appl Mater Interfaces, vol. 12, no. 30, pp. 33887-33898, Jul 29 2020, doi: 10.1021/acsami.0c06382.
[35] J. He et al., "Defect self-compensation for high-mobility bilayer InGaZnO/In2O3 thin-film transistor," Advanced Electronic Materials, vol. 5, no. 6, 2019, doi: 10.1002/aelm.201900125.
[36] J. S. Hur et al., "High-performance thin-film transistor with atomic layer deposition (ALD)-derived indium-gallium oxide channel for back-end-of-line compatible transistor applications: cation combinatorial approach," ACS Appl Mater Interfaces, vol. 14, no. 43, pp. 48857-48867, Nov 2 2022, doi: 10.1021/acsami.2c13489.
[37] C. H. Wu, S. K. Mohanty, B. W. Huang, K. M. Chang, S. J. Wang, and K. J. Ma, "High-mobility and low subthreshold swing amorphous InGaZnO thin-film transistors byin situ H2 plasma and neutral oxygen beam irradiation treatment," Nanotechnology, vol. 34, no. 17, Feb 10 2023, doi: 10.1088/1361-6528/acb5f9.
[38] B. K. Kim et al., "Polycrystalline indium gallium tin oxide thin-film transistors with high mobility exceeding 100 cm2/vs," IEEE Electron Device Letters, vol. 42, doi: 10.1109/LED.2021.3055940.
[39] M. Hu et al., "High mobility amorphous InSnO thin film transistors via low-temperature annealing," Applied Physics Letters, vol. 122, no. 3, 2023, doi: 10.1063/5.0131595.
校內:2028-08-02公開