簡易檢索 / 詳目顯示

研究生: 吳漢倫
Wu, Han-Lun
論文名稱: 波浪通過凹槽內分層流體之研究
Study of water waves over density-stratified fluid in the presence of a submarine trench
指導教授: 蕭士俊
Hsiao, Shih-Chun
共同指導教授: 黃煌煇
Hwung, Hwung-Hweng
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 181
中文關鍵詞: 密度分層流體凹槽底床內波密度流傳輸質點影像測速儀孤立波
外文關鍵詞: density-stratified fluid, trench, internal waves, dense fluid transport, PIV, LIF, solitary wave
相關次數: 點閱:98下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討波浪通過凹槽內部分層流體時,其分層流體之運動和演變行為。藉由物理實驗模型量測和數值模擬對此物理問題進行深入之研究。物理實驗模型量測主要是利用高解析度攝影分別擷取粒子和雷射染劑空間分布之影像,其影像再透過影像處理法分析,遂而得到瞬時流場和流體傳輸之空間分布結果; 數值模式則是利用三維數值模式 (TRUCHAS),藉由求解黏性流體運動方程式(Navier-Stokes方程式) 以計算其數值流場。再利用流體體積法 (volume of fluid method) 模擬表面波運動、界面波運動和流體傳輸等行為。
    在規則波通過凹槽內分層流體之實驗量測和數值模擬結果中,皆能觀察到兩種不同類型之界面波運動行為,分別為行進波型態 (traveling waves) 和部分駐波 (partial standing waves) 型態。藉由數值模式更進一步的分析,探討界面波不同運動型態之機制。分析結果可歸納為兩要點:1. 當凹槽背風和迎風邊壁上方自由液面之相位接近180度時,會使界面波運動呈現部分駐波型態2. 當部分駐波型態界面波運動達到內波共振條件時,則可能發生高於表面波振幅之部分駐波型態內波行為。此型態之內波運動會在界面波周圍引發較為劇烈之速度場,對於底床掏刷和結構物破壞深具影響性。此外,透過界面波和表面波頻率分析,可知表面波之非綫性效應對於界面波運動和振幅放大率之影響也為重要因子。
    孤立波通過凹槽內分層流體時,造成的密度流演變行為亦透過物理實驗模型量測,以及數值模擬探討密度流傳輸行為和流場變化特性。當孤立波通過凹槽內分層流體時,凹槽迎風面邊壁周圍之密度流會被渦流帶出凹槽並朝自由液面方向移動。當增加凹槽內部流體的密度、降低入射波非綫性或縮小凹槽寬度,其密度流上升之高度皆會隨之降低。此外,當密度流之密度較大或入射波非綫性較低時,密度流會因重力影響而朝上游方向移動,形成類似異重流之型態。入射波非綫性和凹槽寬度之效應也可能使得渦流和密度流被限制於凹槽內部,而不會朝自由液面方向發展。此種因為波浪所造成的密度流演變之現象,是影響海洋中營養鹽、海洋生態和漁獲分布的因素之一。目前之數值模擬結果亦和實驗量測結果進行詳細的驗證以增進其模式可信性,並進一步利用數值模式考量更多非綫性波浪條件,最後透過量化分析的結果,對非綫性和密度差對於密度流傳輸之影響做更深入之探討。
    本研究主要是針對波浪通過凹槽內部分層流體所致之內波運動、密度流傳輸和流場變化進行深入探討。透過高解析度的實驗量測和數值模擬配合兩個不同議題 (孤立波和規則波),則能夠對此物理現象做詳細之論述且瞭解目前數值模式對此物理問題之適用性。期望對未來相關之工程問題能夠有所裨益。

    This dissertation presents an investigation on the dynamic response of density-stratified fluid within a trench under water waves. For each topics of interest, numerical simulations are supported by carefully conducted experiments. In laboratory experiments, the free surface wave and interfacial motion are captured using a CCD camera and image processing. The dense fluid transport and flow field are measured by laser-induced fluorescence (LIF) and particle image velocimetry (PIV) techniques, respectively. The three-dimensional numerical model Truchas is employed to trace the interfacial motion, dense fluid transport using the volume of fluid method. Comparisons between measurements and numerical results are performed for the free surface elevation, interfacial motion, the dense fluid transport and flow field.
    Regular waves over density-stratified fluid in a submarine trench is first investigated. Both the numerical and experimental results show two types of interfacial motion, namely, partial standing wave patterns and travelling wave patterns. The numerical model is then employed to study the mechanisms of the different modes of interfacial motions (partial standing/traveling waves) and their corresponding amplification factors (external/internal modes). It is shown that the partial standing wave patterns are easily generated when the motion of the surface waves is 180 degrees out of phase at the two sides of the trench. However, the existence of partial standing wave patterns does not mean partial standing internal waves occur. The partial standing internal waves are triggered as internal wave wavelengths reach resonant condition. Furthermore, the ratio of the interface wave height to the surface wave height decreases with wave nonlinearity, suggesting that the nonlinear effect may significantly change the interfacial wave motion. It is found that the excited pairs of counter-rotating vortices around the interfacial wave can induce a large velocity in the lower layer for the internal mode, indicating that bottom erosion can be enhanced in this manner.
    Next, solitary wave over density-stratified fluid in a submarine trench are investigated. A new experiment was conducted to measure the dense fluid transport and flow field. The dense fluid transport and flow field characteristics are discussed in the experiments. The height of the transported dense fluid over the left trench wall decreases as the dense fluid density increases, wave nonlinearity decreases, or trench width decreases. Furthermore, the dense fluid can be transported toward the upstream of the trench when a denser fluid or lower wave nonlinearity is considered. Some dense fluid can be trapped inside the trench due to the effect of lee side trench wall under the high wave nonlinearity and narrower trench width. Comparisons between measurements and numerical results are performed for the free surface elevation and the dense fluid transport and flow field. Good agreements are obtained. The calibrated model is then used to examine the transport processes of the various dense fluids and quantitative analyses also demonstrate that either density of dense fluid or wave nonlinearity significantly affects.

    ABSTRACT I 摘 要 III 誌 謝 V TABLE OF CONTENTS VII LIST OF TABLES X LIST OF FIGURES XI 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature review 3 1.2.1 Regular waves over density-stratified fluid in a submarine trench 3 1.2.2 Solitary wave over density-stratified fluid in a submarine trench 6 1.3 Objectives and overview of the dissertation 8 2 RESEARCH METHODS 10 2.1 Experiment 10 2.1.1 Wave Flume setup and Measurement apparatus 11 2.1.2 Dense fluid 15 2.1.3 Particle image velocimetry (PIV) 15 2.1.4 Laser-induced fluorescence (LIF) 17 2.1.5 Image processing 18 2.2 Numerical model 22 2.2.1 Governing equations 22 2.2.2 Boundary and initial conditions 23 2.2.3 Wave generation 25 2.2.4 Volume of fluid method 28 2.2.5 Partial cell treatment 30 2.2.6 Numerical implementation 30 2.2.7 Computational cycle 32 3 DYNAMIC RESPONSE OF DENSITY-STRATIFIED FLUID IN A RECTANGULAR SUBMARINE TRENCH 34 3.1 Verification of the numerical model 35 3.2 Mechanisms of interfacial waves 42 3.2.1 Kinematic behavior of partial standing interfacial wave 42 3.2.2 Mechanisms of interfacial waves under various wave periods 44 3.2.3 Influence of nonlinearity of the free surface on interfacial wave motion 49 3.3 Interaction between interfacial motion and the flow field in a submarine rectangular trench 53 4 EVOLUTION OF DENSITY-STRATIFIED FLUID FOR SOLITARY WAVES PROPAGATING OVER A SUBMARINE TRENCH 58 4.1 Effect of dense fluid density on dense fluid transport and flow field characteristics 60 4.2 Effect of wave nonlinearity on dense fluid transport and flow field characteristics 86 4.3 Effect of trench width on dense fluid transport and flow field characteristics 110 4.4 Quantitative comparison in terms of maximum height of the dense fluid transport 152 4.5 Numerical scenario studies on dense fluid transport and flow field characteristics 155 4.5.1 Setup and strategy 155 4.5.2 Effects of dense fluid density and wave nonlinearity 156 4.5.3 Quantitative comparison and discussion 164 5 CONCLUSIONS 169 5.1 Summary 169 5.1.1 Regular waves over density-stratified fluid in a submarine trench 169 5.1.2 Solitary waves over density-stratified fluid in a submarine trench 170 5.2 Recommendations for future work 172 APPENDIX 174 REFERENCES 176 VITA 180

    Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid-mechanics. Annual Review of Fluid Mechanics, 23, 261-304.
    Behera, M. R., Murali, K. (2007). Investigations into salt wedge dynamics at a bar blocked estuary using front tracking approach. Journal of Hydro-Environment Research, 1, 70-77.
    Boussinesq, J. (1872). Theory of waves and swell propagated in a long horizontal rectangular canal, and imparting to the liquid contained in this canal approximately equal velocities from the surface to the bottom. Journal de Mathématiques Pures et Appliquées, 17, 55-108
    Canny, J. (1986). A computational approach to edge-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698.
    Chang, C. H., Chu, T., Wang, K. H., Tang, C. J. (2011). Study of solitary-wave-induced fluid motions and vortices in a cavity using a two-dimensional viscous flow model. Journal of Engineering Mechanics-ASCE, 137, 769-778.
    Chang, C. H., Tang, C. J., Lin, C. (2012). Vortex generation and flow pattern development after a solitary wave passing over a bottom cavity. Computers & Fluids, 53, 79-92.
    Chang, C. H., Lin, C. (2015). Effect of solitary wave on viscous-fluid flow in bottom cavity. Environmental Fluid Mechanics, DOI: 10.1007/s10652-015-9402-7.
    Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22, 745-762.
    Chorin, A.J. (1969). On the convergence of discrete approximations to the Navier-Stokes equations. Mathematics of Computation, 23, 341-353.
    Chuang, W. L., Hsiao, S. C. (2011). Three-dimensional numerical simulation of intake model with cross flow. Journal of Hydrodynamics, 23, 314-324.
    Dalrymple, R. A., Liu, P. L. F. (1978). Waves over soft muds. Journal of Physical Oceanography, 8, 1121-1131.
    Douay, C. L., Faure, T. M., Lusseyran, F. (2013). Stereoscopic PIV using optical flow: application to a cavity recirculation. Experiments in Fluids, 54.
    Ferrier, A. J., Funk, D. R., Roberts, P. J. W. (1993). Application of optical techniques to the study of plumes in stratified fluids. Dynamics of Atmospheres and Oceans, 20, 155-183.
    Gade, H. G. (1958). Effects of a nonrigid, impermeable bottom on plane surface waves in shallow water. Journal of Marine Research, 16, 61–82
    Goring, D. G. (1978). Tsunamis-The propagation of long waves onto a shelf. Ph. D. thesis, California Institute of Technology.
    Hirt, C. W., Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225.
    Hosseininia, E. S., Farzaneh, O. (2010). Development and validation of a two-phase model for reinforced soil by considering nonlinear behavior of matrix. Journal of Engineering Mechanics-ASCE, 136, 721-735.
    Hsiao, S. C., Hsu, T. W., Lin, T. C., Chang, Y. H. (2008). On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering, 55, 975-988.
    Hsiao, S. C., Lin, T. C. (2010). Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling. Coastal Engineering, 57, 1-18.
    Hsiao, S. V., Shemdin, O. H. (1980). Interaction of ocean waves with a soft bottom. Journal of Physical Oceanography, 10, 605-610.
    Hsu, T. J., Jenkins, J. T., Liu, P. L. F. (2003). On two-phase sediment transport: Dilute flow. Journal of Geophysical Research, 108, 3057.
    Hsu, W.Y., Hwung, H.H., Yang, R.Y., Liu, C.M. (2012). Interfacial wave motion caused by wave-mud interaction. Journal of Visualization, 15, 215-224.
    Hsu, W. Y., Hwung, H. H., Hsu, T. J., Torres-Freyermuth, A., Yang, R. Y. (2013). An experimental and numerical investigation on wave-mud interactions. Journal of Geophysical Research-Oceans, 118, 1126-1141.
    Hu, K. C., Hsiao, S. C., Hwung, H. H., Wu, T. R. (2012). Three-dimensional numerical modeling of the interaction of dam-break waves and porous media. Advances in Water Resources, 47, 14-30.
    Huang, C. J., Dong, C. M. (1999). Wave deformation and vortex generation in water waves propagating over a submerged dike. Coastal Engineering, 37, 123-148.
    Huang, Z., Wu, T. R., Chen, T. Y., Sim, S. Y. (2013). A possible mechanism of destruction of coastal trees by tsunamis: A hydrodynamic study on effects of coastal steep hills. Journal of Hydro-Environment Research, 7, 113-123.
    Hwung, H. H., Hsu, W. Y., Liu, C. M., Yang, R. Y. (2009). Experimental investigation on the dynamic response of density-stratified fluid in a submarine trench. Proc. 28th International Conference on Ocean, Offshore and Arctic Engineering, Hawaii, 28, OMAE2009-80059, 591-596.
    Kirby, J. T., Dalrymple, R. A. (1983). Propagation of obliquely incident water-waves over a trench. Journal of Fluid Mechanics, 133, 47-63.
    Lassiter, J. B. (1972). The propagation of water waves over sediment pockets. Ph. D. thesis, Massachusetts Institute of Technology.
    Lee, J. J., Ayer, R. M. (1981). Wave-propagation over a rectangular trench. Journal of Fluid Mechanics, 110, 335-347.
    Lin, C., Chang, S. C., Ho, T. C., Chang, K. A. (2006). Laboratory observation of solitary wave propagating over a submerged rectangular dike. Journal of Engineering Mechanics-ASCE, 132, 545-554.
    Lin, C., Ho, T. C., Chang, C. S., Chang, C. H. (2007). Characteristics of vortex structure induced by a solitary wave propagating over a rectangular cavity. Journal of Coastal and Ocean Engineering, 7(2), 1-24.
    Lin, P. Z., Liu, P. L. F. (1998). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 359, 239–264.
    Lin, P. Z., Liu, P. L. F. (1999). Internal wave-maker for Navier-Stokes equations models. Journal of Waterway Port Coastal and Ocean Engineering-ASCE, 125, 207-215.
    Maa, P. Y., Mehta, A. J. (1987). Mud erosion by waves: A laboratory study. Continental Shelf Research, 7, 1269-1284.
    Macpherson, H. (1980). The attenuation of water-waves over a non-rigid bed. Journal of Fluid Mechanics, 97, 721-742.
    Mehta, A. J. (Ed.). (1991). Nearshore and estuarine cohesive sediment transport. American Geophysical Union, 224-246.
    Mei, C. C., Liu, K. F. (1987). A bingham-plastic model for a muddy seabed under long waves. Journal of Geophysical Research-Oceans, 92, 14581-14594.
    Miles, J. W. (1982). On surface-wave diffraction by a trench. Journal of Fluid Mechanics, 115, 315-325.
    Mo, W., Jensen, A., Liu, P. L. F. (2013). Plunging solitary wave and its interaction with a slender cylinder on a sloping beach. Ocean Engineering, 74, 48-60.
    Nimmo, F., Schenk, P. (2006). Normal faulting on Europa: implications for ice shell properties. Journal of Structural Geology, 28, 2194-2203.
    Parau, E., Dias, F. (2001). Interfacial periodic waves of permanent form with free-surface boundary conditions. Journal of Fluid Mechanics, 437, 325-336.
    Park, Y. S., Liu, P. L. F., Clark, S. J. (2008). Viscous flows in a muddy seabed induced by a solitary wave. Journal of Fluid Mechanics, 598, 383-392.
    Quénot, G. M., Pakleza, J., Kowalewski, T. A. (1998). Particle image velocimetry with optical flow. Experiments in Fluids, 25, 177-189.
    Raffel, M., Willert, C. E., Kompenhans, J. (1998). Particle Image Velocimetry. Springer.
    Rider, W. J., Kothe, D. B. (1998). Reconstructing volume tracking. Journal of Computational Physics, 141, 112-152.
    Synolakis, C. E., Bernard, E. N. (2006). Tsunami science before and beyond Boxing Day 2004. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 364, 2231-2265.
    Thorpe, S. A. (1968). On standing internal gravity waves of finite amplitude. Journal of Fluid Mechanics, 32, 489-528.
    Tian, X. D., Roberts, P. J. W. (2003). A 3d LIF system for turbulent buoyant jet flows. Experiments in Fluids, 35, 636-647.
    Ting, F. C. K. (1989). Interaction of water waves with a density-stratified fluid in a rectangular trench. Ph. D. thesis, California Institute of Technology.
    Ting, F. C. K. (1992). On forced internal waves in a rectangular trench. Journal of Fluid Mechanics, 255-283.
    Ting, F. C. K. (1994). Wave interaction with fluid mud in rectangular trench. Journal of Waterway Port Coastal and Ocean Engineering-ASCE, 120, 154-178.
    Ting, F. C. K., Lemasson, W. J. (1996). Dynamic response of fluid mud in a submarine trench to water waves. Coastal Engineering, 27, 97-121.
    Ting, F. C. K., Raichlen, F. (1986). Wave interaction with a rectangular trench. Journal of Waterway Port Coastal and Ocean Engineering-ASCE, 112, 454-460.
    Ting, F. C. K., Raichlen, F. (1988). Wave interaction with rectangular trench in density-stratified fluid. Journal of Waterway Port Coastal and Ocean Engineering-ASCE, 114, 615-636.
    Torres-Freyermuth, A., Hsu, T. J. (2010). On the dynamics of wave-mud interaction: A numerical study. Journal of Geophysical Research-Oceans, 115.
    Troy, C. D., Koseff, J. R. (2005). The generation and quantitative visualization of breaking internal waves. Experiments in Fluids, 38, 549-562.
    Tsai, C. P., Chen, H. B., Jeng, D. S. (2009). Wave attenuation over a rigid porous medium on a sandy seabed. Journal of Engineering Mechanics-ASCE, 135, 1295-1304.
    Webster, D. R., Roberts, P. J. W., Ra'ad, L. (2001). Simultaneous DPTV/PLIF measurements of a turbulent jet. Experiments in Fluids, 30, 65-72.
    Wen, F. (1995). Resonant generation of internal waves on the soft sea-bed by a surface-water wave. Physics of Fluids, 7, 1915-1922.
    Wu, H. L., Hsiao, S. C., Hsu, W. Y., Yang, R. Y., Hwung, H. H. (2015). Dynamic response of density-stratified fluid in a submarine rectangular trench. Journal of Hydro-Environment Research, 9, 61-80.
    Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. Ph. D. thesis, Cornell University.
    Wu, Y. T., Yeh, C. L., Hsiao, S. C. (2014). Three-dimensional numerical simulation on the interaction of solitary waves and porous breakwaters. Coastal Engineering, 85, 12-29.
    Xie, J. J., Liu, H. W., Lin, P. Z. (2011). Analytical solution for long-wave reflection by a rectangular obstacle with two scour trenches. Journal of Engineering Mechanics-ASCE, 137, 919-930.

    下載圖示 校內:2020-07-24公開
    校外:2020-07-24公開
    QR CODE