| 研究生: |
潘巧茵 Pan, Ciao-Yin |
|---|---|
| 論文名稱: |
應用於寬輸入電壓範圍之碳化矽功率電晶體全橋直流諧振轉換器設計及研製 Design and Implementation of SiC-Based Wide Input Voltage Range Full-Bridge DC-to-DC Resonant Converter |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 碳化矽功率元件 、直流-直流轉換器 、寬輸入電壓範圍 、諧振轉換器 、升壓整流器 |
| 外文關鍵詞: | SiC power devices, DC-to-DC converter, wide input voltage range, resonant converter, active-boost rectifier |
| 相關次數: | 點閱:60 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電動車輛的發展,在電動車系統中的電源轉換器更被重視,其中介於電動車電池組與輔助電路之間的寬輸入範圍轉換器是一重要研究課題。本論文以碳化矽功率元件實現了具有升壓整流器之寬輸入範圍轉換器,論文首先探討碳化矽功率元件的特性及諧振轉換器的工作原理,並詳細分析諧振電容上的電壓及電流應力。最後,以數位訊號處理器TMS320F28335為控制器,實現輸入直流電壓200-400 V、輸出電壓48 V、額定功率為1 kW之全橋直流諧振轉換器。由實驗結果得知,此轉換器可操作在寬輸入電壓範圍,相較於傳統諧振轉換器,此轉換器操作頻率範圍減小,而最高轉換效率為91.07%。
With the development of electric vehicles (EVs), people have paid more attention to the converters in the EV systems. Among the converters, the wide input voltage range converter implemented between the EV battery pack and the auxiliary circuits is an important research topic. The SiC-based wide input voltage range converter with boost function is implemented in the thesis. The characteristics of SiC power devices and the operating principles of the resonant converter are studied. In addition, the voltage and current stress on the resonant capacitor are also analyzed in detail. Finally, the laboratory prototype of wide input range full-bridge (FB) DC-to-DC resonant converter with active-boost rectifier based on SiC power transistors with the input voltage 200 – 400 V, output voltage 48 V, and rated power 1 kW is implemented with a digital signal processor TMS320F28335. As the experimental results show, this converter can be operated in wide input range. Also, the operating frequency range is smaller compared to conventional resonant converter, and the highest efficiency is 91.07%.
[1] S. Saito, “Role of Nuclear Energy to a Future Society of Shotage of Energy Sources and Global Warming,” Journal of Nuclear Materials, vol. 398, pp. 1-9, 2010.
[2] J. Jiang, A. Blank, F. Maier, A. Bharthepudi, and P. Kumar, “Financial Analysis and Comparison of Compact Electric and Gasoline Cars,” in Proc. IEEE Int. Conf. on PICMET, 2015.
[3] P. Cazzola, M. Gorner, R. Schuitmaker, L. Paoli, S. Scheffer, J. Teter, J. Tattini, K. Palmer, and T. Bunsen “Global EV Outlook 2018-Towards Cross-Modal Electrification,” Economic Cooperation and Development (OCED)/International Energy Agency (IEA), pp. 9, 2018.
[4] C. Alaoui, “Solid-State Thermal Management for Lithium-Ion EV Batteries,” in IEEE TVT, vol. 62, no. 1, pp. 98-107, Jan. 2013.
[5] M. A. Hannan, Md. M. Hoque, S. E. Peng, and M. N. Uddin, “Lithium-Ion Battery Charge Equalization Algorithm for Electric Vehicle Applications,” in IEEE Trans. on IAS, vol. 53, no. 3, pp. 2541-2549, May-Jun. 2017.
[6] H. Li, M. Alsolami, S. Yang, Y. M. Alsmadi, and J. Wang, “Lifetime Test Design for Second-Use Electric Vehicle Batteries in Residential Applications,” in IEEE Trans. on Sustainable Energy, vol. 8, no. 4, pp. 1736-1746, Oct. 2017.
[7] H. M. Fischer, “Voltage Classes for Electric Mobility,” German Electrical and Electronic Manufacturers’ Association, Dec. 2013.
[8] J. S. Lai, H. Miwa, W. H. Lai, N. H. Tseng, C. S. Lee, C. H. Lin, and Y. W. Shih, “A High-Efficiency On-Board Charger Utilitzing a Hybrid LLC and Phase-Shift DC-DC Converter,” in Proc. IEEE Int. Conf. on IGBSG, 2004.
[9] C. Y. Oh, D. H. Kim, D. G. Woo, W. Y. Sung, Y. S. Kim, and B. K. Lee, “High-Efficient Nonisolated Single-Stage On-Board Battery Charger for Electric Vehicles,” in IEEE Trans. on Power Electron., vol. 28, no. 12, pp. 5746-5757, Dec. 2013.
[10] A. K. Singhl and M. K. Pathak, “An Improved Two-Stage Non-Isolated Converter for on-Board Plug-in Hybrid EV Battery Charger,” in Proc. IEEE 1st ICEPEICES, 2016.
[11] G. Liu, Y. Jang, M. M. Jovanovi´c, and J. Q. Zhang, “Implementation of a 3.3-kW DC–DC Converter for EV On-Board Charger Employing the Series-Resonant Converter with Reduced-Frequency-Range Control,” in IEEE Trans. on Power Electron., vol. 32, no. 6, pp. 4168-4184, Aug. 2016.
[12] C. Duan, H. Bai, W. Guo, and Z. Nie, “Design of a 2.5-kW 400/12-V High-Efficiency DC/DC Converter Using a Novel Synchronous Rectification Control for Electric Vehicles,” in IEEE Trans. on TTE, vol. 1, no. 1, pp. 106-114, Jun. 2015.
[13] Z. Nie, W. D. Williams, C. Duan, W. Guo, and K. (Hua) Bai, “System Optimization of a High-Power and High-Step-Down Accessory Power Module for Electric Vehicles,” in Proc. IEEE APEC, 2014.
[14] S. M. N. Hasan, M. N. Anwar, M. Teimorzadeh, and D. P. Tasky, “Features and Challenges for Auxiliary Power Module (APM) Design for Hybrid/ Electric Vehicle Applications,” in Proc. IEEE VPPC, 2011.
[15] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an Active-Clamp Circuit to Achieve Soft Switching in Flyback Converters,” in IEEE Trans. on Power Electron., vol. 11, no. 1, pp. 162-169, Jan. 1996.
[16] B. R. Lin, H. K. Chiang, K. C. Chen, and D. Wang, “Analysis, Design and Implementation of an Active Clamp Flyback Converter,” in Proc. IEEE Int. Conf. on PEDS, 2005.
[17] J. Zhang, X. Huang, X. Wu, and Z. Qian, “A High Efficiency Flyback Converter with New Active Clamp Technique,” in IEEE Trans. on Power Electron., vol. 25, no. 7, pp. 1775-1785, Jul. 2010.
[18] Q. Li, F. C. Lee, and M. M. Jovanovic, “Design Considerations of Transformer DC Bias of Forward Converter with Active-Clamp Reset,” in Proc. IEEE APEC, 1999.
[19] B. R. Lin, K. Huang, and D. Wang, “Analysis, Design, and Implementation of an Active Clamp Forward Converter with Synchronous Rectifier,” in IEEE Trans. on Circuits and Systems, vol. 53, no. 6, pp. 1310-1319, Jun. 2006.
[20] X. H. Chen, Y. F. Zhou, J. N. Chen, and L. L. Wang, “Study on Complex Behavior in Phase-Shifting Full-Bridge ZVS Converter,” in Proc. IEEE APCCAS, 2006.
[21] A. K. Sadigh, V. Dargahi, and K. Corzine, “DSP-Based Digital Control of a Set of Phase-Shifted Full-Bridge DC-DC Converters,” in Proc. 2015 Clemson University PSC, 2015.
[22] H. Huang, “Design an LLC Resonant Half-Bridge Power Converter,” Texas Instruments Power Supply Design Seminar SEM1900, topic 3, TI literature no. SLUP263, 2010.
[23] M. M. Jovanović and B. T. Irving, “Efficiency Optimization of LLC Resonant Converters Operating in Wide Input- and/or Output-Voltage Range by On-the-Fly Topology-Morphing Control,” in Proc. IEEE APEC, 2015.
[24] B. J. Baliga, “Fundamentals of Power Semiconductor Devices, “Springer Science + Business Media, 2008.
[25] J. Zhao and F. Dai, “A New Soft-Switching Two-Switch Forward Converter,” in Proc. IEEE PESC, 2007.
[26] G. Hua, F. C. Lee, and M. M. Jovanovic, “An Improved Full-Bridge Zero-Voltage-Switched PWM Converter Using a Saturable Inductor,” in IEEE Trans. on Power Electron., vol. 8, no. 4, pp. 530-534, Oct. 1993.
[27] D. D. Tran, H. N. Vu, and W. J. Choi, “A Novel Quasi-Resonant ZVZCS Phase Shift Full Bridge Converter with an Active Clamp in the Secondary,” in Proc. IEEE IPEMC, 2016.
[28] P. Wen, C. Hu, H. Yang, L. Zhang, C. Deng, Y. Li, and D. Xu, “A Two Stage DC-DC Converter with Wide Input Range for EV,” in Proc. IEEE IPEMC, 2014.
[29] H. Wu, T. Mu, X. Gao, and Y. Xing, “A Secondary-Side Phase-Shift-Controlled LLC Resonant Converter with Reduced Conduction Loss at Normal Operation for Hold-Up Time Compensation Application,” in IEEE Trans. on Power Electron., vol. 30, no. 10, pp. 5352-5357, Oct. 2015.
[30] X. Zhao, L. Zhang, R. Born, and J. S. Lai, “A High-Efficiency Hybrid Resonant Converter with Wide-Input Regulation for Photovoltaic Applications,” in IEEE Trans. on Ind. Electron., vol. 64, no. 5, pp. 3684-3695, May 2017.
[31] Y. Jang, M. M. Jovanović, J. M. Ruiz, and G. Liu, “Series-Resonant Converter with Reduced-Frequency-Range Control,” in Proc. IEEE APEC, 2015.
[32] T. Ayalew, “SiC Semiconductor Devices Technology, Modeling, and Simulation,” Ph.D. Dissertation, Faculty of Electrical Engineering and Information Technology, Vienna University of Technology, 2004.
[33] W. Zhang and M. Begue, “Common Mode Transient Immunity (CMTI) for UCC2122x Isolated Gate Drivers,” Texas Instruments, SLUA909, 2018.
[34] “GN001 Application Brief How to drive GaN Enhancement mode HEMT,” GaN Systems, 2016.