簡易檢索 / 詳目顯示

研究生: 吳瑞騏
Wu, Jui-Chi
論文名稱: 可程式調整輸出電壓之低EMI數位控制直流-直流轉換器
Digitally Controlled Low-EMI DC-DC Converter with Programmable Output Voltage
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 137
中文關鍵詞: 數位三角-積分調變器阻抗倍增器隨機脈波位置調變器數位脈波寬度調變器直流-直流轉換器
外文關鍵詞: Random Pulse Position Modulation, digital ΣΔ Modulator, Digital Pulse Width Modulator, DC-DC converter, resistance multiplier
相關次數: 點閱:86下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個可調輸出之低EMI數位控制直流-直流轉換器,包含可程式數位ΣΔ參考電壓產生器與完整之數位控制所需之電路,並提出了電阻倍增器概念以及引進隨機脈波位置調變器RPPM、系統控制電路與本文改良之Area-Efficient DPWM概念與Hybrid DPWM所實現的數位dead time最佳化控制。經由以上技術獲得改善其面積、功耗、暫態響應及EMI大小與提升轉換器效率等…好處。本架構以TSMC 0.18um 1P6M 1.8V CMOS製程設計與製造。並且搭配FPGA平台量測與驗證電路功能,證明轉換器在本論文引用RPPM技術下,獲得抑制雜訊能力18dB之幅度。

    This paper proposes a digitally controlled low-EMI DC-DC converter with programmable output voltage, which includes programmable digital ΣΔ voltage reference generator and complete circuits of digital control. Concept of resistance multiplier is first introduced in this paper. Random Pulse Position Modulation (RPPM), system control circuit, and dead time optimization control which is accomplished by our improved version of Area-Efficient DPWM and Hybrid DPWM are also introduced in this work. By the technique mentioned above, the area, power consumption, transient response, efficiency, and EMI are thoroughly improved. This work is designed and manufactured in TSMC 0.18um 1P6M 1.8V CMOS process. The architecture is verified and measured by FPGA platform to prove that with RPPM technique, the overall 18dB of noise suppression is achieved.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究發展 3 1.3 論文架構簡介 7 第二章 數位積體化直流-直流轉換器簡介及原理 8 2.1 降壓型同步轉換器簡介 8 2.1.1直流穩態分析 8 2.1.1.1連續導通模式 9 2.1.1.2不連續導通模式 12 2.1.2交流穩態分析 15 2.1.2.1連續導通模式 15 2.2控制器模式與工作原理 18 2.3類比至數位轉換器(ADC) 20 2.3.1 Window ADC 21 2.3.2 Delay-line ADC 22 2.4數位補償器 26 2.5數位脈波寬度調變器(DPWM) 28 2.5.1 counter-based DPWM 31 2.5.2 Delay line DPWM 32 2.5.3 Hybrid DPWM 34 2.6 數位Dead time最佳化控制 35 第三章 可程式數位ΣΔ參考電壓產生器原理 37 3.1數位ΣΔ調變器 38 3.1.1量化雜訊 38 3.1.2超取樣定理 40 3.1.3雜訊整型器 42 3.1.4一階三角積分調變器 42 3.1.5高階三角積分調變器 44 3.2 RC低通濾波器 45 第四章 隨機脈波位置調變原理 51 4.1假隨機數值產生器PRPG 52 4.2改良版混合式數位脈波寬度調變器(Hybrid DPWM) 54 4.3 Area-Efficient DPWM 58 第五章 系統電路設計與模擬 61 5.1可程式數位ΣΔ參考電壓產生器 63 5.1.1可程式數位ΣΔ參考電壓產生器系統規格決定方法 64 5.1.2數位ΣΔ調變器 65 5.1.3 RC低通濾波器 69 5.2 Delay-line ADC 76 5.3查表式PID數位補償器(使用自行開發之GUI軟體設計) 87 5.4隨機脈波位置調變(RPPM) 89 5.4.1假隨機數值產生器PRPG 91 5.4.2改良版混合式數位脈波寬度調變器(Hybrid DPWM) 92 5.4.3 Area-Efficient DPWM 96 5.5數位dead time最佳化控制 100 5.6系統控制電路 102 第六章 實驗結果 108 6.1可程式數位ΣΔ參考電壓產生器FPGA實作及量測結果 109 6.2降壓型轉換器開迴路結合AEDPWM與PRPG FPGA實作及量測結果 110 6.3數位轉換器閉迴路FPGA實作及量測結果 113 6.4 IC佈局與量測規劃 124 第七章 結論 127 7.1 總結與貢獻 127 7.2 未來研究方向 127 參考文獻 129 附錄:本論文ASSCC會議論文 134

    [1] H. W. Whittington, B. W. Flynn, and D. E. Macpherson, Switched Mode Power Supplies: Design and Construction, 2nd ed. New York: Wiley, 1997.
    [2] Special Issue on Digital Control in Power Electronics, IEEE Trans. on Power Electronics, vol. 18, no. 1, Jan. 2003..
    [3] T. Mark. Caboriault, “The global market for power supply and power management integrated circuits,”IEEE APEC Conf. Rec., pp. 43-48, 1999
    [4] J. Deane and D. Hamill, “Improvement of Power Supply EMC by Chaos,” Electronics Letters, Vol. 32, No. 12, p.1405, 1996.
    [5] M. Barai, S. Sengupt, and J. Biswas, "Optimized design of a high frequency digital controller for DVS-enabled adaptive DC-DC converter," in Power Electronics Specialists Conference, pp. 1801-1807, 2008.
    [6] P. Hao, D. Maksimovic, A. Prodic, and E. Alarcon, "Modeling of quantization effects in digitally controlled DC-DC converters," in Power Electronics Specialists Conference, Vol.6, pp. 4312-4318, 2004.
    [7] Z. Tao, X. Jianping, and B. Francois, "Analog-to-digital converter architectures for digital controller of high-frequency power converters," in IEEE Industrial Electronics, pp. 2471-2476, 2006.
    [8] Z. Lukic, N. Rahman, and A. Prodic, "Multibit Σ-Δ PWM Digital Controller IC for DC-DC Converters Operating at Switching Frequencies Beyond 10 MHz," IEEE Trans. on Power Electronics, vol. 22, pp. 1693-1707, 2007.
    [9] A. Parayandeh, and A. Prodic,” Programmable Analog-to-Digital Converter for Low-Power DC–DC SMPS”, IEEE Trans. on Power Electronics, Vol. 23 pp. 500 – 505, Jan. 2008.
    [10] A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters," in Computers in Power Electronics. Proceedings. IEEE Workshop on, pp. 18-22, 2002
    [11] D. M. Van de Sype, K. De Gusseme, A. R. Van den Bossche, and J. A. Melkebeek, "Small-signal z-domain analysis of digitally controlled converters," in Power Electronics Specialists Conference, PESC, Vol.6, pp. 4299-4305, Annual, 2004.
    [12] B. Patella, A. Prodic, A. Zirger, D. Maksimovic, “High-Frequency digital PWM controller IC for DC-DC converters,” IEEE Transactions on Power Electronics, Special Issue on Digital Control, vol. 18. pp. 438-446, January 2003.
    [13] A. Syed, E. Ahmed, and D. Maksimovic, “Digital pulse width modulator architectures,” Proc. IEEE Power Electronics Specialists Conference, pp. 4689-4695, 2004.
    [14] O. Trescases, W. Guowen, and N. Wai Tung, "A Segmented Digital Pulse Width Modulator with Self-Calibration for Low-Power SMPS," in Electron Devices and Solid-State Circuits, pp. 367-370, 2005.
    [15] A. M. Stankovic, G. C. Verghese, and D. J. Perreault, “Analysis and synthesis of randomized modulation schemes for power converters,” IEEE Trans. on Power Electronics, vol. 10, pp.680-693, Nov. 1995.
    [16] Y. Shrivastva, S. Sathiakumar, and S.Y.R. Hui, “Random discrete PWM method for DC-DC power converters,” Electronic Letters, vol. 32, pp. 2105–2106, Nov. 1996.
    [17] K. K. Tse, H. S. Chung, S. Y. R. Hui, and H. C. So, “A comparative investigation on the use of random modulation schemes for DC/DC converters,” IEEE Trans. Industrial Electronics, vol. 47, pp. 253-263, Apr. 2000.
    [18] F. Mihalic and D. Kos, "Conductive EMI reduction in DC-DC converters by using the randomized PWM," IEEE Trans. Industrial Electronics, vol. 2, pp. 809-814, 2005.
    [19] J. Paramesh and A. Jouanne, “Use of sigma-delta modulation to control EMI from switch-mode power supplies,” IEEE Trans. Industrial Electronics, vol. 48, pp. 111-117, Feb. 2001.
    [20] T. Regan and D. L. Porte, “Easy-to-use spread spectrum clock generator reduces EMI and more,” Linear Technology Magazine, pp.6-12, Feb. 2004.
    [21] A. Santolaria, J. Balcells, D. Gonzalez, J. Gago, and S. D. Gil, "EMI reduction in switched power converters by means of spread spectrum modulation techniques," in Power Electronics Specialists Conference, Vol.1, pp. 292-296, 2004.
    [22] M. Kuisma, “Variable frequency switching in power supply EMI-control: an overview,” IEEE Aerospace and Electronic Systems Magazine, vol. 18, pp. 18-22, Dec. 2003.
    [23] F. Mihalic and D. Kos, “Reduced conductive EMI in switched-mode DC–DC power converters without EMI filters: PWM versus randomized PWM,” IEEE Trans. on Power Electronics, vol. 21, pp. 1783–1794, Nov. 2006.
    [24] O. Trescases, G. Wei; A. Prodic, and W. T. Ng, “An EMI reduction technique for digitally controlled SMPS,” IEEE Trans. on Power Electronics, vol. 22, pp. 1560-1565, July 2007.
    [25] M. M. Hafed, S. Laberge, and G. W. Roberts, "A robust deep submicron programmable DC voltage generator,", IEEE International Symposium in Circuits and Systems, vol.4, pp. 5-8, 2000.
    [26] G. Kennedy and K. Rinne, "A Programmable Bandgap Voltage Reference CMOS ASIC for Switching Power Converter Integrated Digital Controllers," in Power Electronics Specialists Conference, pp. 523-529, 2005.
    [27] Parayandeh, A.; Stupar, A.; Prodic, A.,“Programmable Digital Controller for Multi-Output DC-DC Converters with a Time-Shared Inductor”, Power Electronics Specialists Conference, 2006.
    [28] A. Pizzutelli, A. Carrera, M. Ghioni, and S. Saggini, "Digital Dead Time Auto-Tuning for Maximum Efficiency Operation of Isolated DC-DC Converters," in Power Electronics Specialists Conference, pp. 839-845, 2007.
    [29] B.J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-frequency digital PWM controller IC for DC-DC converters,” IEEE Trans. on Power Electronics, vol. 18, pp. 438–446, Jan. 2003.
    [30] R. F. Foley, R. C. Kavanagh, W. P. Marnane, and M. G. Egan, “An area-efficient digital pulsewidth modulation architecture suitable for FPGA implementation,” Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 1412–1418, 2005.
    [31] Erickson R. W., Fundamentals of Power Electronics. London, U.K. Chapman & Hall, 1997.
    [32] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Kluwer, 2000.
    [33] 梁適安, 交換式電源供給器之理論與實務設計: 全華科技圖書, 2004.
    [34] Vorperian V., “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, May 1990.
    [35] V. Grigore and J. Kyyra, "High power factor rectifier based on buck converter operating in discontinous capacitor voltage mode," in Applied Power Electronics Conference and Exposition, vol.1, pp. 612-618, 1999.
    [36] H. Tsun-Hsiao, T. Hsien-Yi, L. Yu-Zheng, C. Dan, and C. Wei-Hsu, "Digital compensation of a high-frequency voltage - mode DC-DC converter," in Power Electronics and Applications, pp. 1-8, 2007.
    [37] H. Yu-Chi, C. Hsin-Chao, T. Tin-Jong, and C. Ke-Horng, "Dual-section-average (DSA) analog-to-digital converter (ADC) in digital pulse width modulation (DPWM) DC-DC converter for reducing the problem of limiting cycle," in Solid-State Circuits Conference, pp. 145-148, 2008.
    [38] O. Trescases, A. Parayandeh, A. Prodic, and N. Wai Tung, "Sensorless Digital Peak Current Controller for Low-Power DC-DC SMPS Based on a Bi-Directional Delay Line," in Power Electronics Specialists Conference, pp. 1670-1676, 2007.
    [39] m. m. Ilic and D. Maksimovic, "Digital Average Current-Mode Controller for DC–DC Converters in Physical Vapor Deposition Applications," Power Electronics, IEEE Transactions on, vol. 23, pp. 1428-1436, 2008.
    [40] L. Li, "Anatomy of peak current mode control in a monolithic dc/dc converter," in Applied Power Electronics Conference and Exposition, pp. 509-520, 2009.
    [41] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," Power Electronics, IEEE Transactions on, vol. 18, pp. 301-308, 2003.
    [42] O. Trescases, Z. Lukic, N. Wai Tung, and A. Prodic, "A low-power mixed-signal current-mode DC-DC converter using a one-bit ΔΣ DAC," in Applied Power Electronics Conference and Exposition, pp. 5, 2006.
    [43] S. R. Norsworthy, R. Schreier, "Delta-Sigma Data Converters: Theory, design and simulation, ". New Jersey: John Wiley & Sons, Inc., 1996
    [44] R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, IEEE Press, John Wiley & Sons, Inc., 2005.
    [45] Ke-Horng Chen; Chia-Jung Chang; Te-Hsien Liu,” Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation”, Power Electronics, IEEE Transactions on Vol. 23, pp. 180 - 188, Jan. 2008.
    [46] C. W. Leng, C. H. Yang, and C. H. Tsai, "An integrated GUI design tool for digitally controlled switching DC-DC converter,” Proc. IEEE International Conference on Communications, Circuits and Systems, pp. 1324-1327, 2008.
    [47] Altera datasheet, "EP2C20F484C8: IC CYCLONE II FPGA 20K 484-FBGA," 2004.
    [48] Vishay datasheet, "Si4724CY: N-channel synchronous MOSFETs with break-before-make," 2003.
    [49] Datasheet, AD7822, Analog Devices, Inc (2006).
    [50] V. Yousefzadeh, T. Takayama, D. Maksimovi, “Hybrid DPWM with Digital Delay-Locked Loop,” IEEE Workshop on Computers in Power Electronics, pp.142-148, 2006.
    [51] Chih-Wei Mu, Jui-Chi Wu and Chien-Hung Tsai, “Synthesizable Wide Range DPWM with All-Digital PLL for Digitally-Controlled Switching Converter," (accepted) VLSI Design/CAD Symposium, 2009.

    下載圖示 校內:2012-08-28公開
    校外:2014-08-28公開
    QR CODE