簡易檢索 / 詳目顯示

研究生: 任永星
Jen, Yung-Hsin
論文名稱: 具雜訊展抑能力之積體化三角積分降壓轉換器
An Integrated Sigma-Delta Noise-Spread Buck Converter
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 119
中文關鍵詞: 直流轉直流轉換器三角積分調變器
外文關鍵詞: DC-DC converter, sigma-delta modulator
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個可供選擇之全積體化離散時間二階一位元三角調變積分器控制之
    低雜訊直流轉直流轉換器,包含完整之暫態小訊號模型與電路設計。這個轉換器以TSMC 0.35um 3.3V CMOS 製程設計與製造。其回授控制器DT-SDM2 可操作於400K~1M Hz 取樣頻率。DT-SDM2 操作於1M Hz 取樣頻率時與傳統工作於200KHz之PWM控制器相比,其抑制雜訊的能力可達到50dB,於1 MHz 頻率處降低noise floor達53dB,且能有效抑制效率2M Hz 內之雜訊能量達12.5%,其轉換效率仍可高達95.6%,且僅具有0.83%極低之輸出電壓漣波。若相較於連續時間二階一位元直流轉直流降壓轉換器,本論文所提出之全積體化離散時間二階一位元三角調變積分器控制之直流轉直流轉換器也具有達25dB 差距之較優異抑制雜訊能力。

    An integrated sigma.delta noise-spread buck converter using a discrete-time second
    order single.bit sigma-delta modulator (DT-SDM2) is presented. The DT-SDM2 buck
    converter and a compared PWM controller are designed and fabricated on a standard
    TSMC 0.35μm 3.3V CMOS process. Compared to a traditional PWM controller switching
    at 200 kHz, the DT-SDM2 sampling at 1M Hz suppresses the noise tone by 50dB at PWM switching frequency, spreads the noise floor by 53dB at DT-SDM2 sampling frequency,and decreases total noise power by 12.5% in 2M Hz with 95.6% efficiency and 0.83% output voltage ripple. The operating frequency of the proposed DT-SDM2 ranges from 400 KHz to 1 MHz. Simulation results show that DT-SDM2 has better noise performance than PWM and continuous.time SDM2 (CT-SDM2) buck converter.

    第一章 緒論..........................................................................................................................1 1.1 研究背景與動機.................................................................................................... 1 1.2 相關研究發展........................................................................................................ 3 1.3 論文架構簡介........................................................................................................ 5 第二章 三角調變積分器基本原理......................................................................................7 2.1 傳統ADC 原理..................................................................................................... 7 2.2 量化器與量化雜訊................................................................................................ 8 2.3 超取樣(oversampling)定理..................................................................................11 2.4 雜訊整型(noise shaping) ..................................................................................... 12 2.5 一階三角調變積分器 ( first-order Sigma-delta modulator ) ............................. 13 2.5.1 一階三角調變積分器之訊雜比(SNR) .................................................... 14 2.5.2 一階三角調變積分器之平均輸出........................................................... 15 2.5.3 一階三角調變積分器之穩定度分析....................................................... 16 2.6 二階三角調變積分器.......................................................................................... 17 2.7 二階三角調變積分器之係數比例縮小.............................................................. 18 第三章 三角調變積分器降壓穩壓器基本原理................................................................21 3.1 直流穩態分析...................................................................................................... 22 3.1.1 連續導通模式........................................................................................... 22 3.1.2 不連續導通模式....................................................................................... 25 3.2 控制器.................................................................................................................. 28 3.2.1 脈波寬度調變(PWM)控制器................................................................... 28 3.2.2 三角調變積分器(SDM)控制器................................................................ 28 3.3 暫態分析與小訊號模型...................................................................................... 29 3.3.1 功率級小訊號模型................................................................................... 30 3.3.2 二階三角調變積分器之小訊號模型....................................................... 32 3.4 電壓模式控制原理.............................................................................................. 36 3.5 穩壓器效能與定義.............................................................................................. 39 3.6 電源效率比較...................................................................................................... 39 3.7 控制器輸出頻譜比較.......................................................................................... 40 第四章 規格制定與設計考量............................................................................................43 4.1 降壓轉換器規格.................................................................................................. 43 4.2 系統與補償器設計考量...................................................................................... 44 4.2.1 相位邊限與頻寬....................................................................................... 44 4.2.2 功率級電容與電感................................................................................... 45 V 4.2.3 補償器設計............................................................................................... 45 4.3 三角調變積分器考量.......................................................................................... 46 4.3.1 離散時間三角調變積分器基本動作原理............................................... 47 4.3.2 離散時間三角調變積分器設計考量....................................................... 50 4.4 三角調變積分降壓轉換器設計考量.................................................................. 61 4.4.1 功率電晶體最佳化.................................................................................... 61 4.4.2 誤差放大器............................................................................................... 62 第五章 系統模擬平台建立................................................................................................63 5.1 SIMULINK 元件簡介.......................................................................................... 63 5.2 離散時間二階三角調變積分器非理想模型...................................................... 64 5.3 三角調變積分控制器降壓轉換器模型............................................................... 75 5.3.1 功率級模型............................................................................................... 75 5.3.2 補償器....................................................................................................... 77 5.3.3 降壓轉換器MATLAB SIMULINK 模型................................................. 79 5.3.4 PWM 控制降壓轉換器MATLAB SIMULINK 模型.............................. 80 5.3.5 頻譜比較................................................................................................... 81 第六章 電路設計、模擬與佈局........................................................................................83 6.1 二階三角調變積分控制器.................................................................................. 84 6.1.1 訂定訊號範圍........................................................................................... 84 6.1.2 運算放大器............................................................................................... 84 6.1.3 遲滯比較器............................................................................................... 86 6.1.4 Static Latch (D Latch) ................................................................................ 88 6.1.5 回授控制邏輯(Feedback Control Logic) .................................................. 89 6.1.6 四相位時脈產生器(4-phase Clock generator) .......................................... 89 6.1.7 開關的尺寸................................................................................................ 91 6.1.8 二階三角調變積分器佈局與模擬............................................................ 92 6.2 PWM 電壓模式之降壓轉換器............................................................................ 93 6.2.1 誤差放大器................................................................................................ 94 6.2.2 比較器........................................................................................................ 95 6.2.3 鋸齒波產生器............................................................................................ 96 6.2.4 Dead-Time Control..................................................................................... 96 6.2.5 緩啟動電路................................................................................................ 97 6.3 降壓轉換器之佈局............................................................................................... 98 6.4 降壓轉換器模擬結果.......................................................................................... 99 6.4.1 TT 模式下降壓轉換器模擬結果.............................................................. 99 6.4.2 溫度變異與製程變異............................................................................. 105 6.4.3 效率......................................................................................................... 106 VI 6.4.4 Line Regulation........................................................................................ 107 6.4.5 Load Regulation ....................................................................................... 108 6.4.6 預計規格與比較...................................................................................... 109 6.4.7 量測考量..................................................................................................111 第七章 結論與未來研究方向..........................................................................................112 7.1 總結與貢獻.........................................................................................................112 7.2 未來研究方向.....................................................................................................112 參考文獻............................................................................................................................113 附錄 An Integrated Sigma-Delta Noise-Shaped Buck Converter...............................116

    [1] Steven K. Dunlap, Member, IEEE, and Terri S. Fiez, Senior Member, IEEE,” A
    noise.shaped switching power supply using a delta.sigma modulator ,” IEEE
    TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51,
    NO. 6, pp. 1051-1061, JUNE, 2004.
    [2] Marine Wong and Bertan Bakkaloglu, “A Low Noise Buck Converter with a Fully
    Integrated Continuous Time S
    Modulated Feedback Controller,” IEEE Custom
    Integrated Circuits Conference, September 2007.
    [3] M. Kuisma, “Variable Frequency Switching in Power Supply EMI.Control: An
    Overview,” IEEE AES Systems Magazine, pp. 18-22, December 2003.
    [4] Deane J. and Hamill D., “Improvement of Power Supply EMC by Chaos,”
    Electronics Letters, Vol. 32, No. 12, p.1405, 1996.
    [5] Lin F. and Chen D., “Reduction of Supply EMI Emission by switching frequency
    modulation,” IEEE transactions on Power Electronics, Vol. 9, No. 1, pp. 132-137,
    January 1994.
    [6] Mihalic F and Milanovic M., “EMI reduction in Randomized Boost rectifier,” IEEE
    International Symposium on Industrial Electronics, ISIE ’99, Vol. 2, pp.457-462,
    1999.
    [7] Stankovic A. M., Verghese G. C. and Perreault D. J., ”Analysis and Synthesis of
    Random modulation Schemes foe Power Converter,” 24th Annual IEEE Power
    Electronics Specialists Conference, PESC ’93 Record, pp. 2072-2074, 1993.
    [8] Stone D. A., Chambers B. and Howe D., “Random carrier frequency modulation of
    PWM waveforms to ease EMC problems in switched mode power supplies,”
    International Conference on Power Electronics and Drive System, Vol. 1, pp.16-21,
    1995.
    [9] Richard Schreier and Gabor C. Temes, Understanding Delta-Sigma Data Converters,
    IEEE Press, New Jersey, 2005.
    [10] Steven R. Norsworthy, Delta-Sigma Data Converter, IEEE Press, New York, 1997.
    [11] George I Bourdopoulos, Aristodemos Pnevmatikakis, Vassilis Anastassopoulos and
    Theodore L Deliyannis, Delta-Sigma Modulation for Analog-to-Digital Converters:
    Modeling, Design and Applications, Imperial College Press, 2005.
    [12] Hein S. and Zakhor A., Sigma Delta Modulators: Nonlinear Decoding, Algorithms,
    and Stability Analysis, Chapter 7. Kluwer Academic Publishers, Nowell, MA, 1993.
    [13] Candy J., “A use of double integration in sigma.delta modulation,” IEEE Trans.
    Commun., Vol. COM.33, pp.249-258, Mar. 1985.
    [14] 梁適安, 交換式電源供應器之理論與實務設計, 全華科技圖書, 2004.
    114
    [15] Vorperian V., “Simplified Analysis of PWM Converters Using Model of PWM
    Switch Part I: Continuous Conduction Mode,” IEEE Transactions on Aerospace and
    Electronic Systems, vol. 26, no. 3, May 1990.
    [16] Erickson R. W., Fundamentals of Power Electronics. London, U.K. Chapman & Hall,
    1997.
    [17] Guan-Chyun Hsieh, Hung-Liang Chen, and Jung-Chien Li,” Modeling and
    Implementation of Sigma.Delta Modulation Controller for DC/AC Inverter,” The 30th
    Annual Conference of the IEEE Industrial Electronics Society, November 2004.
    [18] H. W. Whittington, B. W. Flynn, D. E. Macpherson, Switched Mode Power Supplies:
    Design and Construction, 2nd, New York: Wiley, 1997.
    [19] Yuen.Lung Kuo and Wan.Rone Liou,” A High Frequency Dual.Mode Buck Converter
    IC for Portable Applications,” 17th VLSI/CAD Symposium, 2006.
    [20] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, New York: Oxford Univ.
    Press, 2002.
    [21] B. E. Boser and B. A. Wooley, “The design of sigma–delta modulation
    analog-to-digital converters,” IEEE J. Solid.State Circuits, vol. 23, pp.1298–1308,
    Dec. 1988.
    [22] Chun-Hsien Su, “A Multibit Cascaded Sigma.Delta Modulator with DAC Error
    Cancellation Techniques,” Masters Thesis, Dept. Elect. Eng., Texas Tech University,
    May 2004.
    [23] T. Takayama and D. Maksimovic, “A power stage optimization method for monolithic
    DC.DC converters,” in Proc. IEEE PESC’06, pp. 1-7, 2006
    [24] Piero Malcovati, Simona Brigati, Fabrizio Francesconi, Franco Maloberti, Paolo
    Cusinato, and Andrea Baschirotto, “Behavioral Modeling of Switched.Capacitor
    Sigma.Delta modulators,” 2003
    [25] Mohamed Dessoukyt , Andreas Kaise8, Marie.Minerve Loueratt and Alain
    Greinert,“Analog Design for Reuse . Case Study: Very Low.voltage D Σ
    Modulator,” 2001
    [26] Mark Burns and Gordon W. Roberts, An Introduction to Mixed.Signal IC Test and
    Measurement, Sponsored by Texas Instruments, 2001.
    [27] Juing-Huei Su, Jiann-Jong Chen, and Dong-Shiuh Wu,” Learning Feedback
    Controller Design of Switching Converters Via MATLAB/SIMULINK,” IEEE
    TRANSACTIONS ON EDUCATION, VOL. 45, NO. 4, pp. 307-315, NOVEMBER
    2002.
    [28] C. F. Lee and P. K. T. Mok, “A monolithic current.mode CMOS DC-DC converter
    with on.chip current.sensing technologies,”IEEE J. Solid.State Circuits, vol. 39, no.
    1, pp. 3-14, Jan. 2004.
    115
    [29] TI Application Report, “Predictive Gate Drive Boosts Synchronous DC/DC Power
    Converter Effiency,” Apr. 2003
    [30] 林瑞禮, “電力電子特論,”國立成功大學電機工程系, 中華民國九十五年九月二十
    日.
    [31] Keng C. Wu, Switch-Mode power Converters Design and Analysis, Elsevier
    Academic press, 2006.

    下載圖示 校內:2010-09-08公開
    校外:2010-09-08公開
    QR CODE