簡易檢索 / 詳目顯示

研究生: 葉昭龍
Yeh, Chao-Lung
論文名稱: 彈性波在飽和及未飽和土壤中傳波特性之影響評估
An Assessment of Characteristics of Elastic Wave Propagation and Attenuation through Saturated and Unsaturated Soils
指導教授: 詹錢登
Jan, Chyan-Deng
羅偉誠
Lo, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 74
中文關鍵詞: 膨脹波土壤特性傳波速度衰退係數
外文關鍵詞: Dilatational waves, Attenuation coefficient, Phase velocity, Soils
相關次數: 點閱:151下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用孔彈性力學理論 (poroelasticity) 分析彈性波在飽和土壤及未飽和土壤中之傳波特性。飽和土壤之傳波頻率方程式是依據Biot (1956a, b) 模式所建立;未飽和土壤之傳波頻率方程式則是引用Lo et al. (2005) 模式。這兩個傳波頻率方程式可由數值模擬解出,進而得知十一種不同土壤 [砂土 (sand)、壤質砂土 (loamy sand)、砂質壤土 (sandy loam)、壤土 (loam)、坋質壤土 (silt loam)、砂質黏壤土 (sandy clay loam)、黏質壤土 (clay loam)、坋質黏壤土 (silty clay loam)、砂質黏土 (sandy clay)、坋質黏土 (silty clay) 和黏土 (clay),依美國農業部 (USDA) 土壤分類] 在飽和及未飽和情況下且震盪頻率為50、100、150、200和250 Hz之傳波速度及傳波衰退係數。

    在飽和土壤中 (孔隙完全由水或空氣所填滿),P1 (Biot快速膨脹波) 波的傳波速度與傳波頻率無關,但與土壤和孔隙流體特性有關;P1波在各種飽和含水土壤中的傳波速度之差異不顯著,但在各種飽和含空氣土壤 (全乾土壤) 中的傳波速度之差異較明顯,而且在前者的速度遠高於在後者的速度;P1波的傳波衰退係數約與傳波頻率兩次方成正比。P2波 (Biot慢速膨脹波) 的傳波速度遠小於P1波的傳波速度,但P2波的傳波衰退係數遠大於P1波的傳波衰退係數,而且前述兩者均與土壤材質有密切之關係;P2波的傳波速度及衰退係數均約與傳波頻率的1/2次方成正比。

    在未飽和土壤中 (孔隙中水和空氣並存),除了前述P1和P2波之外,存在第三個膨脹波P3 (波速最慢之膨脹波),此波是由於毛細壓力變動所產生。數值模擬結果顯示P1波波速與潤濕流體 (水) 的彈性係數有很大的相關,與非潤濕流體 (空氣) 的彈性係數影響較小。除了砂土與壤質砂土,其它九種土壤的P1波波速在特定飽和度有突然高起之現象,其背後控制之物理機制主要是受兩個與非潤濕流體相關儲水因子所影響,其比值直接控制此現象。本文結果亦顯示當頻率越大,P2波與P3波之波速則越大,但是P1波波速並不與頻率相關。當飽和度低於0.9時,P2波之波速會隨飽和度增加而減少,P3波則隨飽和度增加而增加。這三種波的衰退係數大小隨頻率而改變,P1波於波速突然高起之處衰退係數會變極小甚至為零,P2和P3波有相同的量化因子 (quality factor) 其值為常數。P1波的傳波衰退係數約與傳波頻率兩次方成正比,P2和P3波的傳波速度及衰退係數均約與傳波頻率的1/2次方成正比。

    Elastic wave phenomena in porous media containing compressible viscous fluids are of considerable interest to diverse engineering applications. The behaviors of dilatational wave propagation and attenuation through different types of saturated soils whose pore spaces are completely occupied either by water or by air were first investigated in the present study based on the celebrated Biot model equations of poroelasticity. Then, applying the Lo et al. model [2005], we examined the effects of two immiscible pore fluids (water and air) on the behavior of elastic waves. The excitation frequency discussed both in the saturated and unsaturated soils was at the seismic range (50, 100, 150, 200 and 250 Hz). The existence of three different modes of dilatational wave in an unsaturated porous medium was demonstrated analytically and numerically.

    In saturated soils, we show that the phase velocity of P1 wave (the Biot fast wave) is equal to the square root of the ratio of an effective bulk modulus to an effective density of the fluid-containing porous medium, regardless of excitation frequency and pore fluid. It is also found that the phase velocity of the P1 wave does not vary significantly in the water-saturated case whereas the variation becomes very apparent in the air-saturated case. In reference to the P2 wave (the Biot slow wave), its attenuation is demonstrated to be greater than that of the P1 wave, but its phase velocity is less than that of the P1 wave.

    In unsaturated soils, our numerical results show that the phase velocity of the P1 wave whose magnitude is greatest is closely related to elastic properties of the wetting fluid. Although the phase velocity of the P1 wave is independent of the excitation frequency, the phase velocities of the P2 (second fastest) and P3 (slowest) waves are showed to be positively proportional to the excitation frequency. At certain soils, the phase velocity of the P1 wave has an abrupt increase, the physical mechanism behind which is controlled by the ratio of two storativity factors. When the saturation degree of water is below 0.9, the phase velocity of the P2 wave decreases as water saturation increases whereas that of the P3 wave increases. The attenuation of these three waves varies with the excitation frequency. The attenuation of the P1 wave is almost equal to zero at the water saturation in which the P1 wave has an abrupt increase in its phase velocity. The P2 and P3 waves are found to have the same constant value of the quality factor. Regardless of either saturated or unsaturated soils, the attenuation coefficient of the P1 wave is approximately proportional to the square of the excitation frequency. The magnitude of the phase velocity of attenuation coefficient of the P2 wave (saturated or unsaturated soils) and P3 wave (unsaturated soils) increases with the square root of the excitation frequency.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VI 圖目錄 VII 符號說明 VIII 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 4 1.3 本文架構 5 第二章 飽和彈性孔隙介質傳波模式 6 2.1 控制方程式 6 2.1.1 控制方程式 6 2.1.2 應力-應變關係式 7 2.1.3 由多相系統動量平衡方程式推導控制方程式 9 2.2 傳波頻率方程式 11 2.3 膨脹波在飽和土壤中的傳遞特性 13 2.3.1 土壤類別及相關參數 13 2.3.2 P1波在土壤中傳波特性 16 2.3.3 P2波在土壤中傳波特性 22 第三章 未飽和彈性孔隙介質傳波模式 27 3.1 理論模式 27 3.2 數值模擬 34 3.3 數值結果 37 3.3.1 波速 37 3.3.2 衰退係數 38 第四章 結論與建議 67 4.1 結論 67 4.2 建議 69 參考文獻 70

    Bear, J., Dynamics of Fluids in Porous Media, Dover, Mineola, N. Y, 1988.
    Beresnev, I. A., and P. A. Johnson, Elastic-wave stimulation of oil production: a review of methods and results, Geophysics, Vol. 59, no. 6, pp. 1000-1017, 1994.
    Berryman, J. G., Confirmation of Biot’s theory, Applied Physics Letters, Vol. 37, no. 4, pp. 382-384, 1980.
    Berryman, J. G., Effective conductivity by fluid analogy for a porous insulator filled with a conductor, Physical Review B, Vol. 27, no. 12, pp. 7789-7792, 1983.
    Berryman, J. G., L. Thigpen, and R. C. Y. Chin, Bulk elastic wave propagation in partially saturated porous solids, Journal of the Acoustical Society of America, Vol. 84, no. 1, pp. 360-373, 1988.
    Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 168-178, 1956a.
    Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, II. Higher frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 179-191, 1956b.
    Biot, M. A., and D. G. Willis, The elastic coefficient of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, pp. 594-601, 1957.
    Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, Vol. 33, no. 4, pp. 1482-1498, 1962.
    Brooks, R. H., and A. T. Corey, Hydraulic properties of porous media, Hydrology Paper 3, Civ. Eng. Dep., Colo. State Univ., Fort Collins, 1964.
    Brutsaert, W., The propagation of elastic waves in unconsolidated unsaturated granular mediums, Journal of Geophysical Research, Vol. 69, no. 2, pp. 243-257, 1964.
    Burridge, R., and J. B., Keller, Poroelasticity equations derived from microstructure, Journal of the Acoustical Society of America, Vol. 70, no. 4, pp. 1140-1146, 1981.
    Chattopadhyay, A., and R. K. De, Love wave types in a porous layer with irregular interface, International Journal of Engineering Science, Vol. 21, pp. 1295-1303, 1983.
    Cosenza, P., M. Ghoreychi, G. de Marsily, G. Vasseur, and S. Violette, Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient, Water Resources Research, Vol. 38(10), 1207, doi:10.1029/2001 WR001201, 2002.
    Cowin, S. C., Bone poroelasticity, Journal of Biomechanics, Vol. 32, pp. 217-238, 1999.
    Das, B. M., Advanced Soil Mechanics, Taylor and Francis, Philadelphia, Pa, 1997.
    de la Cruz, V., and T. J. T. Spanos, Seismic wave propagation in a porous medium, Geophysics, Vol. 50, no. 10, 1556-1565, 1985.
    Deresiewicz, H., The effect of boundaries on wave propagation in a liquid-filled porous solid, II, Love waves in a porous layer, Bulletin of the Seismological Society of America, Vol. 51, pp. 51-59, 1961.
    Drew, D., L. Cheng, and R.T. Lahey, The analysis of virtual mass effects in two-phase flow, International Journal of Multiphase Flow, Vol. 5, no. 4, pp. 233-242, 1979.
    Drew, D. A., and R.T. Lahey, Application of general constitutive principles to the derivation of multidimensional two-phase flow equations, International Journal of Multiphase Flow, Vol. 5, no. 4, pp. 243-264, 1979.
    Dvorkin, J., and A. Nur, Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms, Geophysics, Vol. 58, no. 4, pp. 524-533, 1993.
    Dvorkin, J., R. Nolen-Hoeksema, and A. Nur, The squirt-flow mechanism: macroscopic description, Geophysics, Vol. 59, no. 3, pp. 428-438, 1994.
    Fetter, C. W., Contaminant Hydrogeology, Prentice-Hall, Upper Saddle River, N. J, 1999.
    Garg, S. K., and A.H. Nayfeh, Compressional wave propagation in liquid and/or gas saturated elastic porous media, Journal of Applied Physics, Vol. 60, no. 9, pp. 3045-3055, 1986.
    Gray, W. G., General conservation equations for multi-phase systems: 4. Constitutive theory including phase change, Advances in Water Resources, Vol. 6, pp. 130-140, 1983.
    Girsang, C. H., A numerical investigation of the seismic response of the aggregate pier foundation system, Master Thesis, Department of Civil Engineering, University of Virginia, Blacksburg, 2001.
    Hughes, E. R., T. G. Leighton, G. W. Petley, P. R. White, and R. Cm. Chivers, Estimation of critical and viscous frequencies for Biot theory in cancellous bone, Ultrasonics, Vol. 41, no. 5, pp. 365-368, 2003.
    Johnson, D. L., Recent developments in the acoustic properties of porous media, in Proceedings of the International School of Physics “Enrico Fermi” Course XCIII, Frontiers in Physical Acoustics, edited by D. Sette, pp. 255-290, Elsevier, New York, 1986.
    Lo, W.-C., G. Sposito, and E. Majer, Immiscible two-phase flows in deformable porous media, Advances in Water Resources, Vol. 25 (8-12), pp. 1105-17, 2002.
    Lo, W.-C., G. Sposito, and E. Majer, Wave propagation through elastic porous media containing two immiscible fluids, Water Resources Research, Vol. 41, no. 2, pp. W02025, 2005.
    Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, Vol. 12, no. 3, pp. 513-522, 1976.
    Plona, T. J., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Applied Physics Letters, Vol. 36, no. 4, pp. 259-261, 1980.
    Pride, S. R., A. F. Gangi, and F. D. Morgan, Deriving the equations of motion for isotropic media, Journal of the Acoustical Society of America, Vol. 92, pp. 3278-3290, 1992.
    Rawls, W. J., J. R. Ahuja, and D. L. Brakensiek, Estimating soil hydraulic properties from soils data. Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, pp. 329-341, 1992.
    Santos, J. E., J. M. Corbero, and J. Douglas, Static and dynamic behavior of a porous solid saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1428-1438, 1990a.
    Santos, J. E., J. Douglas, J. Corbero, and O. M. Lovera, A model for wave propagation in a porous medium saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1439-1448, 1990b.
    Santos, J. E., C. L. Ravazzoli, P. M. Gauzellino, J. M. Carcione, and F. Cavallini, Simulation of waves in poro-viscoelastic rocks saturated by immiscible fluids. Numerical evidence of a second slow wave, Journal of Computational Acoustics, Vol. 12, no. 1, pp. 1-21, 2004.
    Schrefler, B. A., and X. Y. Zhan, A fully coupled model for water-flow and air-flow in deformable porous-media, Water Resources Research, Vol. 29, no. 1, pp. 155-167, 1991.
    Stoll, R. D., Acoustic waves in saturated sediments, Physics of Sound in Marine Sediments, edited by L. Hampton, Springer, New York, pp. 19-39, 1974.
    Tajuddin, M., Rayleigh waves in a poroelastic half-space, Journal of the Acoustical Society of America, Vol. 75, pp. 682-684, 1984.
    Truesdell, C., Rational Thermodynamics, Springer, New York, 1984.
    Tuncay, K., and M. Y. Corapcioglu, Body waves in poroelastic media saturated by two immiscible fluids, Journal of Geophysical Research, Vol. 101, pp. 25149-25159, 1996.
    Tuncay, K., and M. Y. Corapcioglu, Wave propagation in poroelastic media saturated by two fluids, Journal of Applied Mechanics, Vol. 64, no. 2, pp. 313-320, 1997.
    van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Vol. 44, no. 5, pp. 892-898, 1980.
    Wei, C., and K. K. Muraleetharan, A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity, International Journal of Engineering Science, Vol. 40, pp. 1807-1833, 2002.

    下載圖示 校內:立即公開
    校外:2006-07-27公開
    QR CODE