| 研究生: |
高瑋 Kao, Wei |
|---|---|
| 論文名稱: |
疏濬對降低河道洪水位之影響 Effect of Dredging on Reduction in River Flood Stages |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 疏濬 、洪水位 |
| 外文關鍵詞: | dredging, flood stage |
| 相關次數: | 點閱:65 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有不利邊坡穩定的地質與地形條件的山坡地,會因地震與降雨事件誘發大量土石崩塌,形成鬆散的土石堆置區及崩積層。豪雨逕流會侵蝕運移土石進入河道,影響輸砂平衡及河道穩定性。河川上游大量土石流入,中下游常會因輸砂能力不足而河道淤積,導致排洪斷面縮減,洪水位上升,而危害防洪構造物及兩岸居民生命財產安全。疏濬河床淤積以整理河道,增加河道通洪容量,是降低洪水位的工程方法之一,並有改善河床穩定及保育生態環境之功用。本研究旨在研究以疏濬工法降低洪水位,以防止溢流氾濫及維護河床穩定。
本研究以二維水理輸砂模式模擬沖積河川之洪水過程,藉由現況河道及不同疏濬方案洪水位之比較,分析疏濬之降低洪水位成效,以作為研選疏濬方案之參考。
因高屏溪集水區在颱風豪雨易有大規模崩塌,造成下游河道淤積而屢肇洪災,並影響高屏攔河堰之水資源利用,故擬以疏濬工法降低洪水位,並改善高屏攔河堰上游淤積以利取水功能。本研究在高屏攔河堰上游之疏濬工法研究,研選四種在凸岸深槽處之疏濬區疏濬尺度方案,以二維水理輸砂模式演算沿河洪水位,並以未疏濬之洪水位比較成效。
由模擬結果分析顯示,疏濬方式為加長及加寬疏濬區,能有效降低洪水位,且疏濬區具有儲砂之功能,能減少下游之淤積,加強堤防護岸之保護。
In Taiwan, hillslides are of the geological and topographical conditions that are unfavorable to slope stability, thus readily leading to soil-stone collapse due to earthquake and rainfall, further forming loose rock deposition area and colluvium. Heavy rain runoff will erode and transport the rock into the channel, affecting the balance of the sediment transport and channel stability. With a large amount of rock flowing into the upstream, the midstream and downstream will have river deposition issues due to insufficient sediment transport capacity. As a result, the flood discharge section will be reduced and the flood stage will rise. This will endanger flood-control structures as well as the life and property of the residents on field sides of the levee. Dredging riverbed sedimentation to harness the channel and to increase the flood discharge section is one of engineering methods used to reduce flood stages. Moreover, it will prevent flooding and maintain the stability of the riverbed. The study is aimed toward an investigation of the use of dredging methods on reducing flood stages to prevent overflow and to maintain the stability of the riverbeds.
This study simulates an alluvial river flood process using the two-dimensional hydraulic and sediment transport model. Based on the comparison of current channel and the flood stages of different dredging schemes, the effectiveness of dredging on reducing the flood stage is evaluated, a result that can be used as a reference for the selection of dredging schemes.
The Gaoping River watershed is prone to large-scale landslides when heavy rains or typhoons occur, the deposition often cause occasional flooding of downstream, affecting the Gaoping River Weir water usage. Therefore, it is proposed that using the dredging method to reduce the flood stage will improve upstream deposition situation and be useful to the Gaoping Weir water intake. The present study investigated dredging methods on the upstream of the Gaoping River Weir, selecting four types of dredging schemes within the dredging area that locates on the convex bank of the main channel. A two-dimensional hydraulic sediment transport model was used to calculate the flood stage along the river, and the flood stage before dredging was taken as the basis for the comparison of effectiveness.
The simulation results showed that the dredging method lengthened and widened the dredging area, and thus effectively reduced the flood stage. Because of the improvement in sediment storage, the dredging area can reduce the downstream deposition and strengthen the levee and revetment.
1. 王紹成,虞和瑩,「河流動力學」,人民交通出版社,新華書店,北京 (1991)。
2. 田慶奇,「黃河下游河道疏濬挖槽效果的概化模型試驗研究」,碩士論文,中國水利水電科學研究院 (2002)。
3. 吉祖穏,胡春宏,田慶奇,「柳海濤,黃河下游彎曲行河道疏浚減淤機理試驗」,中國泥沙研究期刊,第六期 (2001)。
4. 交通大學土木工程研究所,「河道輸砂數值模式之評估研究 (IV)」,經濟部水資源統一規劃委員會研究報告,第83EC2A371001號 (1994)。
5. 吳建民,林襟江,周克魯,吳鵬飛,「河川泥砂移動性之研究」,經濟部水資會水工試驗室研究報告 (1975)。
6. 吳瑞濱,「二維河川水流與泥砂沖淤模擬之研究」,國立台灣大學農業工程學研究所碩士論文 (1993)。
7. 何興亞,「彎曲定岸河道水理特性與床形變化之研究」,國立台灣大學土木工程研究所博士論文 (1987)。
8. 李俊霖,「以有限體積法模擬複式渠道水流之研究」,國立成功大學水利及海洋工程研究所碩士論文 (1996)。
9. 林延郎,「沉滓級配對彎道床形與床質分佈影響之研究」,國立台灣大學土木工程學研究所博士論文 (1991)。
10. 林凱文,蔡智恆,蔡長泰,「分段演算法於二維變量流及底床演變模擬之應用」,中華民國力學學會第二十屆全國力學會議論文集,第576-583頁 (1996)。
11. 林鈺敦,「可蘭數對馬科馬可二維沖淤模式之發展與應用」,國立成功大學水利及海洋工程研究所碩士論文 (1999)。
12. 林鈺敦,蔡智恆,蔡長泰,「MacCormack顯式法中人工滯性項之探討」,第十屆水利工程研討會論文集,第D80-D87頁 (1999)。
13. 胡四一,譚維炎,「用TVD格式預測潰壩洪水波的演進」,水利學報,第七卷,第 1-11頁 (1989)。
14. 胡四一,譚維炎,「一維不恒定明流計算的三種高性能差分格式」,水科學進展,第二卷第一期,第 11-21頁 (1990)。
15. 侯志軍,「挖河減淤機理及挖槽幾何參數的試驗研究」,碩士論文,西安理工大學 (2003)。
16. 胡蘇澄,盧昭堯,吳益裕,陳台芳,「台灣中部蓮華池地區高黏土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第十卷,第一期,第33-40頁 (1995)。
17. 馬明明,「台灣中部與台北地區降雨特性及沖蝕性關係之研究」,碩士論文,國立中興大學土木工程研究所 (1995)。
18. 翁俊鴻,「豪雨期間集水區細沉滓對廣水域底床演變之影響」,博士論文,國立成功大學水利及海洋工程研究所 (2013)。
19. 經濟部,「東港溪、高屏溪流域大斷面觀測調查」,水利署第七河川局 (2013)。
20. 經濟部,「高屏溪治理規劃檢討」,水利署水利規劃試驗所 (2008)。
21. 經濟部,「高屏溪治理規劃檢討-水文分析報告」,水利署水利規劃試驗所 (2015)。
22. 陳東,胡春宏,張啓舜,吉祖穏,「河床枯萎疏濬淺論」,泥沙研究期刊,第一期 (2000)。
23. 陳金諾,「洪水對河道沖淤及棲地影響之研究」,博士論文,國立成功大學水利及海洋工程研究所 (2006)。
24. 陳薔諾,蔡智恆,蔡長泰,「集集地震對濁水溪流域土壤沖蝕量與產砂量之影響」,台灣水利,第五十一卷,第一期,第26-35頁 (2003)。
25. 清水康行,板倉忠興,「沖積河川二維性流況之河床變動計算」,北海道開發局土木試驗所,北海道 (1986)。
26. 郭惠貞,「複式河槽非均質底床演變模式之研究」,國立成功大學水利及海洋工程研究所碩士論文 (1994)。
27. 張明明,「非均勻沉滓動床之沖降模擬」,國立成功大學水利及海洋工程研究所碩士論文 (1991)。
28. 張海燕,「河流演變工程學」,科學出版社,新華書店,北京 (1990)。
29. 張瑞瑾,謝鑒衡,王明甫,黃金堂,「河流泥沙動力學」,水利電力出版社,武漢水利電力學院 (1988)。
30. 張凱堯,蔡智恆,蔡長泰,「卡氏座標系與正交曲線座標系之彎道二維變量流模式之比較」,中華民國力學學會第二十屆全國力學會議論文集,第568-575頁 (1996)。
31. 連和政,「二維水深平均模式應用於彎道水流與泥沙運移模擬之研究」,國立交通大學土木工程研究所博士論文 (1999)。
32. 黃孟竹,「複式河槽非均質底床之數值模擬」,國立成功大學水利及海洋工程研究所碩士論文 (1995)。
33. 黃國文,「以有限體積法模擬彎道水流之研究」,國立成功大學水利及海洋工程研究所碩士論文 (1995)。
34. 葉克家,「非均勻沉滓多方式輸砂模式」,河川輸砂模式講習班講義,國立交通大學土木系 (1995)。
35. 葉克家,楊錦釧,「河川彎道動床數值模式之發展應用研究」,國立交通大學土木工程研究所,中興工程科技研究發展基金會研究報告,第SFRDEST R-95-HY-01-6號 (1995)。
36. 詹益京,「二維邊界符合座標明渠紊流之數值模擬」,國立成功大學水利及海洋工程研究所碩士論文 (1990)。
37. 楊昌儒,「地文性淹水預報系統建構之研究」,博士論文,國立成功大學水利及海洋工程研究所 (2000)。
38. 楊昌儒,蔡長泰,「數值高程模型解析度對淹水模擬影響之研究-以賀伯颱風為例」,台灣水利,第四十六卷,第一期,第43-52頁 (1998)。
39. 楊國录,吳虹娟,余明輝,李紀澤,王昌慈,「河道開挖效果預測方法初步研究」,水科學進展期刊,第十三卷,第三期 (2002)
40. 楊錦釧,「沖積河川非均勻質漂砂輸送之數值模擬」,行政院國家科學委員會防災科技研究報告,第78-01號 (1989)。
41. 潘存鴻,許學咨,林柄堯,「非恒定水深平均的K-紊流模型的有限元模式」,水動力學研究與進展,A輯第十卷,第三期,第 281-289頁 (1995)。
42. 蔡長泰,「沖積河川變量流之模擬」,國立成功大學土木工程研究所博士論文 (1981)。
43. 蔡長泰,沈學汶,王文江,「台灣河川沉滓輸運之分析(二)」,經濟部水資源統一規劃委員會研究報告,第CKHOPJ-92-006號 (1992)。
44. 蔡長泰,俞德忠,「彎曲渠道之水流模擬」,中華民國力學學會第十五屆全國力學會議論文集,第281-288頁 (1991)。
45. 蔡長泰,蔡智恆,「洪流演算模式(FRLFI模式)之建立:(I)理論手冊」,行政院國家科學委員會專題研究計畫成果報告,計畫編號:NSC 83-0410-E006-036 (1994)。
46. 蔡長泰,蔡智恆,「平衡狀態含沙水流之流速與濃度分佈」,第八屆水利工程研討會論文集,第585-592頁 (1996)。
47. 蔡長泰,蔡智恆,「梯形寬頂堰堰流公式適用性之研究」,台灣水利季刊,第四十五卷,第二期,第29-45頁 (1997)。
48. 蔡雪芳,「貼壁座標二維河口潮流數值模式建立與流場模擬」,國立成功大學水利及海洋工程研究所碩士論文 (1992)。
49. 蔡智恆,「定岸沖積河流水理及底床演變之模擬」,博士論文,國立成功大學水利及海洋工程研究所 (2000)。
50. 蔡智恆,蔡長泰,「彎道二維緩變量流之模擬」,中國土木水利工程學刊,第七卷,第四期,第 461-473頁 (1995)。
51. 蔡智恆,蔡長泰,「有效應力對明渠水深平均模式之影響」,八十六年電子計算機於土木水利工程應用論文研討會論文集,第745-756頁 (1997)。
52. 蔡智恆,蔡長泰,「水深平均二維明渠變量流有限元素模式之研究」,台灣水利季刊,第四十七卷,第三期,第22-33頁 (1999)。
53. 蔡智恆,高偉騰,蔡長泰,「二維沖積河流底床演變分段分離演算模式之研究」,中華民國力學學會期刊,第十四卷,第二期,第109-124頁 (1998)。
54. 蔡智恆,陳尚華,蔡長泰,「懸浮載輸運對沖積河流複式斷面底床演變之影響」,台灣水利季刊,第四十九卷,第三期,第14-29頁 (2001)。
55. 盧之偉,蔡智恆,蔡長泰,「顯式有限差分法應用於平面二維變量流之模擬」,中華民國力學學會第二十二屆全國力學會議論文集,第387-394頁 (1998)。
56. 錢寧,「高含沙水流運動」,清華大學水利系泥沙研究室,清華大學出版社,北京 (1989)。
57. 錢寧,萬兆惠,「泥沙運動力學」,第三版,科學出版社,新華書店,北京 (1991)。
58. 顏清連,李鴻源,張守陽,「沖積河流之沖淤力學與數值模擬~以濁水溪為應用對象(III)」,行政院國家科學委員會防災科技研究報告,第78-64號 (1990)。
59. 顏清連,何興亞,「水庫對下游彎道床形與床質級配之影響研究(三)」,行政院國家科學委員會專題研究報告,台大水工所 (1992)。
60. 謝正倫,陳哲維,謝岩樹,「平面二維水庫沖淤模式之開發」,八十二年電子計算機於土木水利工程應用論文研討會論文集,中華民國台灣,第 730-739頁 (1993)。
61. 謝慧民,「網路型河川擬似二維沖淤行為之數值模擬」,國立台灣大學土木工程研究所博士論文 (1996)。
62. 譚維炎,胡四一,「二維淺水流動的一種普遍的高性能格式(有限體積Osher法)」,水科學進展,第二卷,第三期,第 154-161頁 (1991)。
63. 譚維炎,胡四一,「無結構網格上二維淺水流動的數值模擬」,水科學進展,第六卷,第一期,第 1-9頁 (1995)。
64. 譚維炎,胡四一,「二維淺水明流的一種二階高性能算法」,水科學進展,第三卷,第二期,第 89-95頁 (1992a)。
65. 譚維炎,胡四一,「計算淺水動力學的新方向」,水科學進展,第三卷,第四期,第 310-317頁 (1992b)。
66. 譚維炎,胡四一,「淺水流動計算中一階有限體積法Osher格式的實現」,水科學進展,第五卷,第四期,第 262-270頁 (1994)。
67. 譚維炎,胡四一,韓曾萃,潘存鴻,樓越平,毛喜中,「錢塘江口湧潮的二維數值模擬」,水科學進展,第六卷,第二期,第 83-93頁 (1995)。
68. Akanbi, A. A. and Katopodes, N. D.,“Model for Flood Propagation on Initially Dry Land,”Journal of Hydraulic Engineering, Vol. 114, No. 7, pp. 689-706 (1988).
69. Ambrosi, D.,“Approximation of Shallow Water Equations by Roes Riemann Solver,”International Journal For Numerical Method in Fluids, Vol. 20, pp. 157-168 (1995).
70. Ariathurai, R. and Arulanandan, K., “Erosion rates of cohesive soils.”, Journal of the Hydraulics Division, ASCE, Vol. 104, No. HY2, pp. 279-283. (1978).
71. Berger, R. C. and Stockstill, R. L.,“Finite-Element Model for High-Velocity Channels,”Journal of Hydraulic Engineering, Vol. 121, No. 10, pp. 710-716 (1995).
72. Bridge, J. S.,“A Revised Model for Water Flow, Sediment Transport, Bed Topography and Grain Size Sorting in Natural River Bends,”Water Resources Research, Vol. 28, No. 4, pp. 999-1013 (1992).
73. Chang, H. H.,“Generalized Computer Program FLUVIAL-12 Mathematical Model for Erodible Channels,”April (1990).
74. Chaudhry, M. H., Open-Channel Flow, Prentice Hall, Englewood Cliffs, New Jersey (1993).
75. Chen, C. N., Yeh, C. H., Tasi, C. H. and Tasi, C. T., “The simulation of disharge and suspended sediment concentration hydrographs in river basin.”, Proceeding of the 5th Taiwan-Japan Joint Seminar on Natural Hazards Mitigation, Tainan, Taiwan, pp. 99-108 (2002).
76. Chen, Y. H., Reservoir Sedimentation Model -- RESSED, User's Manual, October (1993).
77. Coleman, N. L.,“Flume Studies of the Sediment Transfer Coefficient,”Water Resources Research, Vol. 6, No. 3, pp. 801-809 (1970).
78. Cole, P and Miles, G. V., “Two-Dimensional model of mud transport.”, Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 1, pp. 1-12 (1983).
79. Cunge, J. A., “Unsteady Flow in Open Channel.”, Water Resource Publishing Limited, London, pp.705-762 (1980).
80. Dammuller, D. C., Bhallamudi, S. M. and Chaudhry, M. H.,“Modeling of Unsteady Flow in Curved Channel,”Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1479-1495 (1989).
81. De Vriend, H. J.,“A Mathematical Model of Steady Flow in Curved Shallow Channel,”Journal of Hydraulic Research, Vol. 15, No. 1, pp. 37-54 (1977).
82. Dhatt, G., Soulaimani, A., Ouellet, Y. and Fortin, M.,“Development of New Triangular Elements for Free Surface Flows,”International Journal For Numerical Method in Fluids, Vol. 6, pp. 895-911 (1986).
83. Fennema, R. J. and Chaudhry, M. H.,“Implicit Methods for Two-Dimensional Unsteady Free-Surface Flows,”Journal of Hydraulic Research, Vol. 27, No. 3, pp. 321-332 (1989).
84. Garcia, M. H., “Sedimentation engineering: processes, measurements, modeling, and practice.”, American Society of Civil Engineers(2008).
85. Glaister, P.,“Flux Difference Splitting for the Euler Equations with Axial Symmetry,”Journal of Engineering Mathematics, Vol. 22, pp. 107-121 (1988a).
86. Glaister, P.,“Approximate Riemann Solutions of the Shallow Water Equations,”Journal of Hydraulic Research, Vol. 26, No. 3, pp. 293-306 (1988b).
87. Havis, R. N., Alonso, C. V. and King, J. G.,“Modeling Sediment in Gravel-Bedded Streams Using HEC-6,”Journal of Hydraulic Engineering, Vol. 122, No. 10, pp. 559-564 (1996).
88. Hirsch, C., Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization, John Wiley & Sons Ltd., New York (1988).
89. Holly, F. M. and Karim, M. F.,“Computer Simulation Prognosis for the Degradation of the Missouri River Between Gavins Point Dam and Iowa's Southern Border,”Iowa Institute of Hydraulic Research, No. 267, The University of Iowa (1983).
90. Itakura, T., Kishi, T.,“Open Channel Flow with Suspended Sediments,”Journal of the Hydraulics Division, ASCE, Vol. 106, No. HY8, pp. 1325-1343 (1980).
91. Jameson, A., Schmidt, W., and Turkel, E.,“Numerical Solutions of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes,”AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259 (1981).
92. Jayawardena, A.W., and R.R. Bhuiyan, “Evaluation of an interrill soil erosion model using laboratory catchment data.”, Hydrological processes, Vol. 13, 89-100 (1999).
93. Jin, Y. C. and Steffler, P. M.,“Predicting Flow in Curved Open Channels by Depth-Averaged Method,”Journal of Hydraulic Engineering, Vol. 119, No. 1, pp. 109-124 (1993).
94. Karim, M. F. and Kennedy, J. F.,“IALLUVIAL: A Computer-Based Flow and Sediment Routing Model for Alluvial Streams and its Application to the Missouri River,”Iowa Institute of Hydraulic Research, Report No. 250, The University of Iowa (1982).
95. Karim, M. F. , Holly, F. M. and Kennedy, J. F.,“Bed Armoring Procedures in IALLUVIAL and Application to the Missouri River,”Iowa Institute of Hydraulic Research, Report No. 269, The University of Iowa, December (1983).
96. Katopodes, N. D.,“A Dissipative Galerkin Scheme for Open Channel Flow,”Journal of Hydraulic Engineering, Vol. 110, No. 4, pp. 450-466 (1984).
97. Komura, S. and Simons, D. B.,“River Bed Degradation Below Dam,”Journal of Hydraulic Division, Vol. 93, No. HY4, pp. 1-14 (1967).
98. Lai, C. T.,“A Numerical Scale Model for Simulating Unsteady Alluvial-Channel Flow,”Twelve Selected Computer Stream Sedimentation Models Developed in the United States, Edited by Fan, S. S., Federal Energy Regulatory Commission, pp. 189-260 (1988).
99. Mehta, A. J. and Partheniades, E, “An investigation of the depositional properties of flocculated fine sediments.”, Journal of Hydraulic Research, Vol. 13, No. 4, pp. 361-381 (1975).
100. Mehta, A. J., Hayter, E. J., Parker, W. R., Krone, R. B. and Teeter, A. M,“Cohesive Sediment Transport. I: Process Description,”Journal of Hydraulic Engineering, Vol. 115, No. 8, pp. 1076-1093 (1989).
101. Meselhe, E. A. and Holly, F. M.“Simulation of Unsteady Flow in Irrigation Canals with Dry Bed,”Vol. 119, No. 9, pp. 1021-1039 (1993).
102. Migniot, C., “Bedding-down and rheology of muds. Part I.”, La Houille Blanche 1:11–29, 2:95–111 (in French) (1989).
103. Molls, T., and Chaudhry, M. H.,“Depth-Averaged Open-Channel Flow Model,”Journal of Hydraulic Engineering, Vol. 121, No. 6, pp. 453-465 (1995).
104. Molls, T., Chaudhry, M. H. and Khan, K. W.,“Numerical Simulation of Two-Dimensional Flow near A Spur-Dike,”Advances in Water Resources, Vol. 18, No. 4, pp. 227-236 (1995).
105. Mutchler, C.K. and Young, R.A., “Soil detachment by raindrops.”, Proceedings of sediment-yield workshop, ARS-S-40, USDA (1975).
106. M. van Ledden, “A process-based sand–mud model.”, In: Winterwerp JC, Kranenburg C (eds) Fine sediment dynamics in the marine environment, Proceedings of Marine Science. Elsevier, Amsterdam, 5:577–594 (2002).
107. Nelson, J. M.,“Mechanics of Flow and Sediment Transport over Nonuniform Erodible Beds,”Ph. D. thesis, University of Washington (1988).
108. Odgaard, A. J.,“Flow and Bed Topography in Alluvial Channel Bend,”Journal of Hydraulic Engineering, Vol. 110, No. 4, pp. 521-535 (1984).
109. Odgaard, A. J.,“Meander Flow Model. I: Development,”Journal of Hydraulic Engineering, Vol. 112, No. 12, pp. 1117-1136 (1986).
110. Odgaard, A. J.,“River-Meander Model. I: Development,”Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1433-1450 (1989a).
111. Odgaard, A. J.,“River-Meander Model. II: Applications,”Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1451-1464 (1989b).
112. Osher, S. and Solomon, F.,“Upwind Difference Schemes for Hyperbolic Systems of Conservation Law,”Mathematics of Computation, Vol. 38, No. 158, pp. 339-374 (1982).
113. Parchure, T. M. and Mehta, A. J., “Erosion of soft cohesive sediment deposits.”, Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 10, pp. 1308-1326. (1985)
114. Parker, G.,“The ACRONYM Series of Pascal Programs for Computing Bedload Transport in Gravel Rivers,”Saint Anthony Falls Hydraulic Laboratory, No. M-220, The University of Minnesota (1990a).
115. Parker, G.,“Surface-Based Bedload Transport Relation for Gravel Rivers,”Journal of Hydraulic Research, Vol. 20, No. 4, pp. 417-436 (1990b).
116. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, pp. 81-120 (1980).
117. Proffitt, A.P.B., C.W. Rose, and P.B. Hairsine, “Rainfall detachment and deposition: experiments with low slope and significant water depths.”, Soil Sci. Soc. Am J., 55 ,325-332. (1991).
118. Rijn, L. C. van,“Sediment Transport, Part II: Suspended Load Transport,”Journal of Hydraulic Engineering, Vol. 110, No. 11, pp. 1613-1641 (1984).
119. Roache, P. J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, New Mexico (1972).
120. Roe, P. L.,“Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,”Journal of Computational Physics, Vol. 43, pp. 357-372 (1981).
121. Sharma, P. P., Gupta, S. C. and Foster, G. R., “Raindrop-induced soil detachment and sediment transport from interrill areas.”, Soil Science Society America Journal, Vol. 59, pp. 727-734 (1995).
122. Shettar, A. S. and Murthy, K. K. ,“A Numerical Study of Division of Flow in Open Channel,”Journal of Hydraulic Research, Vol. 34, No. 5, pp. 651-675 (1996).
123. Shimizu, Y. and Itakura, T.,“Calculation of Bed Variation in Alluvial Channels,”Journal of Hydraulic Engineering, Vol. 115, No. 3, pp. 367-384 (1989).
124. Shimizu, Y., Yamaguchi, H. and Itakura, T.,“Three-Dimensional Computation of Flow and Bed Deformation,”Journal of Hydraulic Engineering, Vol. 116, No. 9, pp. 1090-1108 (1990).
125. Simons, D. B., Chen, Y. H. and Ponce, V. M.,“Development of a Two-Dimensional Water and Sediment Routing Model and its Application to Study Lower Pool 4 in the Upper Mississippi River System. Vol. I: Model Development and Calibration,”June (1979).
126. Simons, D. B. and Senturk, F.,“Sediment Transport Technology,”Water Resources Publications, Colorado, U.S.A. (1977).
127. Smith, J. D. and McLean, S. R.,“A Model for Flow in Meandering Streams,”Water Resources Research, Vol. 20, No. 9, pp. 1301-1315 (1984).
128. Spasojevic, M. and Holly, F. M.,“Numerical Simulation of Two-Dimensional Deposition and Erosion Patterns in Natural Water Bodies,”IIHR Report No. 149, University of Iowa (1988).
129. Spekreijse, S. P.,“Multigrid Solution of Steady Euler Equations,”CWI Tract 46, Center for Mathematics and Computer Science, Amsterdam, The Netherlands (1988).
130. Steger, J. L. and Warming, R. F.,“Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods,”Journal of Computational Physics, Vol. 40, pp. 263-293 (1981).
131. Struiksma, N., Olesen, K. W., Flokstra, C. and de Vriend, H. J.,“Bed Deformations in Curved Alluvial Channels,”Journal of Hydraulic Research, Vol. 23, No. 1, pp. 57-79 (1985).
132. Tan, W., Shallow Water Hydrodynamics - Mathematical Theory and Numerical Solution for a Two-Dimensional System of Shallow Water Equations, Elsevier, Amsterdam, The Netherlands (1992).
133. Tasi, C. H. and Tasi, C. T., “Velocity and concentration distributions of sediment-laden open channel flow.”, Journal of the American Water Resources Association, Vol. 36, No. 5, pp. 1075-1086 (2000).
134. Taylor, C. and Hughes, T. G., Finite Element Programming of the Navier-Stokes Equations, Pineridge Press Ltd. (1981).
135. Teisson, C.,“Cohesive Suspended Sediment Transport: Feasibility and Limitations of Numerical Modeling,”Journal of Hydraulic Research, Vol. 29, No. 6, pp. 755-769 (1991).
136. Thomas, W. A. and McAnally, W. H. Jr.,“User's Manual For the Generalized Computer Program System: Open-Channel Flow and Sedimentation TABS-2,”HL-85-1, Hydraulics Laboratory, Waterways Experiment Station, Corps of Engineers, U. S. Army (1985).
137. Tsai, C. H. and Tsai, C. T.,“Modeling of Unsteady Flow in Curved Channels: Comparison of Numerical Methods,”Proceeding of International Conference on High-Performance Computing in Asia-Pacific Region, Taipei, Taiwan (1995).
138. Tsai, C. H. and Tsai, C. T.,“Finite Element Two-Dimensional Unsteady Flow Model for Curved Channels,”Proceedings of the Second International Conference on Hydroinformatics, Zurich, Switzerland, pp. 753-754 (1996).
139. Tsai, C. H. and Tsai, C. T.,“Velocity and Concentration Distributions of Sediment-Laden Open Channel Flow, ”Water Resources Bulletin (2000).
140. Tsai, C. T., Chang, K. Y. and Tsai, C. H.,“A Numerical Model in Cartesian Coordinate System for Unsteady Flow in Curved Channels,”Proceeding of Second International Conference on Hydro-Science and Engineering, Beijing, China, pp. 370-377 (1995).
141. Tseng, M. H.,“Two-dimensional Shallow Water Flows Simulation Using TVD-MacCormack Scheme,”Journal of Hydraulic Research, Vol. 38, No. 2, pp. 123-131 (2000).
142. U. S. Army Corps of Engineers,“Generalized Computer Program System for Open-Channel Flow and Sedimentation TABS System, Volume 1: General Overview,”Hydraulics Laboratory, Waterways Experiment Station (1990).
143. van Leer, B.,“Flux-Vector Splitting for the Euler Equations,”Proceeding of 8th International Conference on Numerical Methods in Fluid Dynamics, E. Krause ed., Springer Verlag, Berlin, Germany, pp. 507-512 (1982).
144. van Niekerk, A., Vogel, K. R., Slingerland, R. L. and Bridge, J. S.,“Routing of Heterogeneous Sediments over Movable Bed : Model Development,”Journal of Hydraulic Engineering, Vol. 118, No. 2, pp. 246-262 (1992a).
145. Vanoni, V. A.,“Transportation of suspended sediment by water,”Transactions, American Society of Civil Engineers, Vol. 111, pp. 67-133 (1946).
146. Vogel, K. R., van Niekerk, A., Slingerland, R. L. and Bridge, J. S.,“Routing of Heterogeneous Sediments over Movable Bed : Model Verification,”Journal of Hydraulic Engineering, Vol. 118, No. 2, pp. 263-279 (1992b).
147. Wang, Tsan-Wen,“A Simulation of Sediment Deposition in Natural River by the Method of Characteristics,”台灣大學工程學刊,第16期 (1973)。
148. Yalin, M. S., Mechanics of Sediment Transport, Pergamon Press Inc., New York (1972).
149. Yang, C. T., Molinas, A. and Song, C. S.,“GSTARS - Generalized Stream Tube Model for Alluvial River Simulation,”U. S. Interagency Subcommittee on Sedimentation, December (1988).
150. Yee, H. C.,“Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications,”Journal of Computational Physics, Vol. 68, pp. 151-179 (1987).
151. Yeh, K. C. and Kennedy, J. F.,“Moment Model of Nonuniform Channel-Bend Flow. I: Fixed Beds,”Journal of Hydraulic Engineering, Vol. 119, No. 7, pp. 776-795 (1993a).
152. Yeh, K. C. and Kennedy, J. F.,“Moment Model of Nonuniform Channel-Bend Flow. II: Erodible Beds,”Journal of Hydraulic Engineering, Vol. 119, No. 7, pp. 796-815 (1993b).
153. Yen, C. L.,“Bed Configuration of Characteristics of Subcritical Flow in A Meandering Channel,” Ph.D. Dissertation, University of Iowa, Iowa city, U.S.A. (1967).
154. Yen, C. L. and Ho, S. Y.,“Bed Evolution in Channel Bend,”Journal of Hydraulic Engineering, Vol. 116, No. 4, pp. 544-561 (1990).
155. Zhao, D. H., Tabios III, G. Q. and Shen, H. W.,“RBFVM-2D Model, River Basin Two-Dimensional Flow Model Using Finite Volume Method: Program Documentation,”University of California, Berkeley, Calif. (1992).
156. Zhao, D. H., Shen, H. W., Tabios III, G. Q., Lai, J. S. and Tan, W. Y.,“Finite-Volume Two-Dimensional Unsteady-Flow Model for River Basins,”Journal of Hydraulic Engineering, Vol. 120, No. 7, pp. 863-883 (1994).
157. Zijlema, M., Segal, A. and Wesseling, P.,“Finite Volume Computation of Incompressible Turbulent Flows in General Coordinates on Staggered Grids,”International Journal For Numerical Method in Fluids, Vol. 20, pp. 621-640 (1995).