| 研究生: |
沈于堯 Shen, Yu-Yao |
|---|---|
| 論文名稱: |
基於影像降取樣之HEVC兩階段位元率控制法 Two Pass Rate Control in HEVC Based on Down-sampling Video |
| 指導教授: |
郭致宏
Kuo, Chih-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | HEVC 、位元率控制 、影像降取樣 、兩階段編碼 |
| 外文關鍵詞: | Rate control, HEVC, Consistent video quality, Two pass, Lagrange multiplier |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
位元率控制演算法在現今的影像編碼及有限頻寬的串流應用中扮演著相當重要的角色。然而,大多數的研究都著重於提升影像編碼的效率,而忽略了影像品質的穩定度。許多位元率控制法因為編碼參數的初始值不理想,造成影像初期的品質有劇烈的變動。另外,利用畫面間參考關係而使用的階層化編碼架構雖然可以有效的提升編碼效率,但也帶來畫面間更大的品質差異。
這篇論文提出一個目標為穩定影像視覺效果的兩階段位元率控制演算法,首先將影像降取樣為四分之一的大小,並使用兩個不同的拉格朗日乘數( ) 值進行兩次編碼。從降取樣影像的編碼結果預測原始影像的lnR-ln 模型並計算一個固定的 值,應用在原始影像編碼的所有畫面中。另外我們也採用一個量化參數(QP) 的調整策略,利用編碼降取樣影像時記錄的位元率與失真資訊,來調整編碼原始影像時使用的QP 值,以進一步讓畫面間品質更加穩定並降低位元率誤差。實驗結果顯示,這篇論文所提出的兩階段位元率控制方法相較於HEVC 的測試軟體HM16.9,BDBR 為8.28%,平均可以降低96.76% 的品質變動程度。
While most researches of rate control focus on the coding efficiency, the fluctuation of video quality is seldom considered. Many rate control schemes suffer from un-reliable initialization of coding parameters, and lead to seriously inconsistent qual-ity. Besides, the hierarchical structure for frame references introduces more quality fluctuations, although it improves the coding efficiency significantly. This thesis presents a two pass rate control method that aims for a consistent visual quality. In the first pass the video is down-sampled by four times, and then encoded two times using two different Lagrange multiplier ( ) values. The results of encoding down-sampled video is used to build the log R-ln model second pass to use and derive a fixed value which is applied for all frames in the original video. A quantization parameter (QP) adjustment policy is adopted to maintain a consistent quality and lower the bitrate error. Experimental results show that the proposed two pass rate control method has 8.28% BDBR and can reduce the fluctuation of video quality to be averagely 96.76% less than that encoded by the HEVC Test Model (HM16.9).
[1] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012.
[2] B. Li, H. Li, L. Li, and J. Zhang, “ domain rate control algorithm for high efficiency video coding,” IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3841–3854, 2014.
[3] H. Choi, J. Yoo, J. Nam, D. Sim, and I. V. Bajic, “Pixel-wise unified ratequantization model for multi-level rate control,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 1112–1123, 2013.
[4] S. Wang, S. Ma, S. Wang, D. Zhao, and W. Gao, “Quadratic -domain based rate control algorithm for HEVC,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp. 1695–1699, 2013.
[5] I. Zupancic, M. Naccari, M. Mrak, and E. Izquierdo, “Two-pass rate control for improved quality of experience in UHDTV delivery,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 1, pp. 167–179, 2017.
[6] S. Wan, Y. Gong, and F. Yang, “Perception of temporal pumping artifact in video coding with the hierarchical prediction structure,” in Multimedia and Expo (ICME), 2012 IEEE International Conference on, pp. 503–508, 2012.
[7] B. Li, D. Zhang, H. Li, and J. Xu, “QP determination by lambda value,” in JCTVC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 9th Meeting, Geneva, Switzerland, Doc. JCTVC-I0426, 2012.
[8] Y. Li, H. Jia, X. Xie, and T. Huang, “Rate control for consistent video quality with inter-dependent distortion model for HEVC,” in Visual Communications and Image Processing (VCIP), 2016, pp. 1–4, 2016.
[9] J. L. Mitchell, MPEG video compression standard. Springer Science& Business Media, 1997.
[10] B. G. Haskell, A. Puri, and A. N. Netravali, Digital video: an introduction to MPEG-2. Springer Science & Business Media, 1996.
[11] R. Koenen, “Overview of MPEG-4 standard,” ISO/IEC JTC1/SC29/WG11 N4668, 2002.
[12] K. Rijkse, “H. 263: video coding for low-bit-rate communication,” IEEE Communications Magazine, vol. 34, no. 12, pp. 42–45, 1996.
[13] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.
264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.
[14] D. Mukherjee, J. Han, J. Bankoski, R. Bultje, A. Grange, J. Koleszar, P.Wilkins, and Y. Xu, “A technical overview of VP9—the latest open-source video codec,” SMPTE Motion Imaging Journal, vol. 124, no. 1, pp. 44–54, 2015.
[15] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23-50, 1998.
[16] J. De Cock and A. Aaron, “Constant-slope rate allocation for distributed realworld encoding,” in Picture Coding Symposium (PCS), 2016, pp. 1–5, IEEE, 2016.
[17] H. Guo, C. Zhu, Y. Gao, and S. Song, “A frame-level rate control scheme for low delay video coding in HEVC,” in Multimedia Signal Processing (MMSP), 2017 IEEE 19th International Workshop on, pp. 1–6, 2017.
[18] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[19] J. Wen, M. Fang, M. Tang, and K. Wu, “R- model based improved rate control for HEVC with pre-encoding,” in Data Compression Conference (DCC), 2015, pp. 53–62, 2015.
[20] M. Wang, K. N. Ngan, and H. Li, “An efficient frame-content based intra frame rate control for high efficiency video coding,” IEEE Signal Processing Letters,vol. 22, no. 7, pp. 896–900, 2015.
[21] J. M. Boyce, Y. Ye, J. Chen, and A. K. Ramasubramonian, “Overview of SHVC: Scalable extensions of the high efficiency video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 20–34, 2016.
[22] B. Hosking, D. Agrafiotis, D. Bull, and N. Eastern, “An adaptive resolution rate control method for intra coding in HEVC,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, pp. 1486–1490, 2016.
[23] B. Lee, M. Kim, and T. Q. Nguyen, “A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 3,
pp. 465–479, 2014.
[24] J. Si, S. Ma, X. Zhang, and W. Gao, “Adaptive rate control for high efficiency video coding,” in Visual Communications and Image Processing (VCIP), 2012 IEEE, pp. 1–6, 2012.
[25] J. Si, S. Ma, and W. Gao, “Efficient bit allocation and CTU level rate control for high efficiency video coding,” in Picture Coding Symposium (PCS), 2013,pp. 89–92, 2013.
[26] S. Wang, A. Rehman, K. Zeng, and Z. Wang, “Ssim-inspired two-pass rate con-trol for high efficiency video coding,” in Multimedia Signal Processing (MMSP),2015 IEEE 17th International Workshop on, pp. 1–5, 2015.
[27] X. Li, N. Oertel, A. Hutter, and A. Kaup, “Laplace distribution based Lagrangian rate distortion optimization for hybrid video coding,” IEEE Transac-tions on Circuits and Systems for Video Technology, vol. 19, no. 2, pp. 193–205,2009.
[28] B. Li, H. Li, L. Li, and J. Zhang, “Rate control by r-lambda model for HEVC,document jctvc-k0103,” Shanghai, China, Oct, 2012.
[29] M. Wang, K. N. Ngan, and H. Li, “Low-delay rate control for consistent quality using distortion-based lagrange multiplier,” IEEE Transactions on Image Pro-cessing, vol. 25, no. 7, pp. 2943–2955, 2016.
[30] C.-H. Jiang and C.-H. Kuo, “A two-pass video encoder by fixed lagrange multi-pliers,” in Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on, pp. 552-555, 2010.
[31] G. Bjontegarrd, “Calculation of average PSNR differences between RD-curves,” VCEG-M33, 2001.
[32] Y. Xu, Q. Li, X. Li, J. Liu, T. Zhao, et al., “Efficient qp cascading in h. 265/hevc low-delay prediction,” in 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 151–156, 2017.
[33] J. De Cock and A. Aaron, “Constant-slope rate allocation for distributed realworld encoding,” in Picture Coding Symposium (PCS), 2016, pp. 1–5, 2016.
校內:2020-10-01公開