簡易檢索 / 詳目顯示

研究生: 黃俊勝
Huang, Chun-Sheng
論文名稱: 電流模式與漣波控制積體式切換穩壓器之研究與設計
Study and Design of Integrated Switching Regulators with Current-Mode and Ripple-Based Control
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 切換式穩壓器漣波控制適應性導通時間控制電流模式控制快速暫態響應
外文關鍵詞: switching regulator, ripple based control, adaptive on time control, current mode control, fast transient response
相關次數: 點閱:181下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩部分,第一部分針對現存的電流模式控制之切換式降壓轉換器,建立一個系統性的設計與分析流程,包含系統模型、補償器設計、電晶體層次設計、晶片下線,最後藉由晶片量測結果來驗證此設計流程的正確性。量測結果證明在輸入電壓於2.7~4.2V的範圍內,在200mA~500mA負載電流範圍內,此轉換器可以穩定的提供1.8V的輸出電壓,暫態響應約為80μs,最高轉換效率為92.3%。而藉由頻域的量測,也證明了本設計與分析流程的正確性,同時證明系統的穩定性。本電流模式控制降壓轉換器使用TSMC 0.35μm CMOS製程進行設計,外接電感與輸出電容分別為4.7μH與8.9μF。
      本論文第二部分提出一具有快速暫態響應、寬負載電流範圍、近似V2適應性導通時間控制切換式降壓穩壓器,此穩壓器使用固定時間控制為基礎,搭配適應性導通時間來改善非線性控制不定頻的缺點,使其在輕重載時系統可以近似定頻操作,在極輕載時為維持轉換效率,進入PFM模式操作。本論文使用前授路徑的方式,可以不需要依靠輸出電容ESR即可取得與電感電流同相之訊號,可使用小ESR的電容降低輸出漣波。本轉換器使用TSMC 0.35um CMOS製程進行設計與製作,外接電感與輸出電容分別為4.7μH與8.9μF,量測結果顯示在輸入電壓3.3V~4.2V、負載電流為5mA~800mA的範圍內,可以提供穩定之輸出電壓1.2V,暫態響應小於4μs,最高轉換效率為86.6%。

    This thesis is composed of two parts. The first part focuses on the current mode control switching regulator. Systematic design procedure and analysis flow are presented with system modeling,compensator design,transistor level design and chip implementation. The design procedure is verified by the chip’s measurement results. The measurement results show that this converter can operate with load current from 200mA-500mA in a supply voltage from 2.7-4.2V and the output voltage of 1.8V. The transient response time is about 80μs and the highest efficiency is 92.3%. By the loop gain measurement, the correctness of the analysis flow is verified. The stability of the proposed buck converter was guaranteed by the loop gain measurement, too. This converter has been designed and fabricated with TSMC 2P4M 0.35μm CMOS process. The off chip inductor and the output capacitor are 4.7μH and 8.9μF.
    In the second part of this thesis, a fast transient response、wide load current range quasi-V2 adaptive on time switching regulator is presented. This converter used the constant on time control as the operation principle. With the adaptive on time technique, the switching frequency variation problem has been fixed. The system switching frequency is pseudo fixed between the light load and heavy load condition. In the ultra-light load condition, this converter would operate in PFM mode in order to increase the efficiency. By the feed-forward technique, the inductor current information is obtained no longer relying on the ESR of output capacitor, which could reduce the output ripple by using capacitor with small ESR. This converter has been designed and fabricated with TSMC 2P4M 0.35μm CMOS process. The off chip inductor and the output capacitor are 4.7uH and 8.9uF. The measurement result show that this converter can operate with load current from 5mA-800mA in a supply voltage from 3.3-4.2V and the output voltage of 1.2V. The transient response time is about 4us and the highest efficiency is 86.6%.

    摘要 III Abstract V 誌謝 Vii 目 錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究發展 3 1.3 目標與貢獻 4 1.4 論文架構簡介 5 第二章 脈波寬度調變切換式降壓穩壓器簡介 6 2.1 特性規格 6 2.1.1 轉換效率 6 2.1.2 暫態響應 6 2.1.3 線性調節率與負載調節率(Line Regulation & Load Regulation) 8 2.2 直流穩態分析 9 2.3 切換式穩壓器系統操作原理 13 2.3.1 電壓模式控制 14 2.3.2 電流模式控制 14 2.4 電流模式控制交流小訊號分析 16 2.5 電壓/電流控制比較 19 2.5.1 系統補償 19 2.5.2 穩定性 19 2.5.3 Line rejection 20 2.5.4 Signal-to-Noise Ratio 20 第三章 電流模式控制切換式降壓穩壓器設計 21 3.1 系統架構與規格 21 3.2 系統分析與補償器設計 22 3.2.1 系統分析 22 3.2.2 補償器設計 22 3.3 電路設計與模擬 23 3.3.1 OTA 24 3.3.2 比較器 25 3.3.3 時脈訊號與鋸齒波產生器 25 3.3.4 電壓電流轉換器 26 3.3.5 電感電流感測電路 27 3.3.6 緩衝器與停滯時間電路 28 3.3.7 PWM控制訊號產生器 29 3.3.8 Power Switch 30 3.4 佈局考量 30 3.5 晶片量測結果 33 3.6 成果比較與討論 36 第四章 切換式降壓穩壓器之漣波控制技術 38 4.1 漣波控制基本原理及特點 38 4.2 磁滯控制 39 4.2.1 電壓磁滯控制 39 4.2.2 電流磁滯控制 43 4.3 V2控制 44 4.4 固定導通時間控制 47 4.5 各種漣波控制之優缺點比較與討論 50 4.6 衍生問題與改善對策 51 4.6.1 切換頻率不固定 51 4.6.2 易受雜訊干擾及系統穩定性 53 4.6.3 線性調節率與負載調節率 56 4.7 漣波控制切換式降壓穩壓器研究現況與討論 56 4.7.1  磁滯控制近年研究現況: 57 4.7.2 V2控制近年研究現況: 59 4.7.3 固定導通時間控制近年研究現況: 59 4.7.4 漣波控制近年研究現況討論: 60 第五章 採用適應導通時間準V2控制之快速暫態、寬負載範圍切換式穩壓器 62 5.1 目標與應用 62 5.2 系統架構與規格 64 5.3 系統運作原理分析與設計 65 5.4 電路設計與模擬 67 5.4.1 適應性導通時間控制電路 67 5.4.2 零電流偵測電路 70 5.4.3 緩衝器與停滯時間電路 71 5.5 晶片佈局與量測結果 72 5.5.1 晶片佈局 72 5.5.2 量測結果 73 5.6 成果比較與討論 82 第六章 結論 84 6.1 總結與貢獻 84 6.2 未來工作與研究方向 85 參考文獻 87

    [1] TI datasheet, " TPS65054: Power for TMS320C5504/05," 2010.
    [2] Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001.
    [3] 2006 TI Portable Power Design Seminar, Topics 7, TI Literature No. SLPT015
    [4] 梁適安, “交換式電源供應器之理論與實務設計” Aug. 2008
    [5] R. Gregorian, Introduction to CMOS Op-Amps and Comparators.New York: Wiley, 1999..
    [6] Robert Mammano, “Switching power supply topology: voltage mode vs. current mode,”DN-62 Unitrode Application Notes, Texas Instruments, 1999.
    [7] LEE Cheung Fai, “Design of Monolithic Current-Mode DC-DC Buck Converters with Internal Current Sensing,” The Hong Kong University of Science and Technology, MS. Thesis, 2001
    [8] C. Lee and P. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004
    [9] 王振宇 “具有可調斜率特性的補償斜波之電流型降壓穩壓器” 國立成功大學碩士論文, 2005
    [10] C.-H. Chang and R.C. Chang, “A Novel Current-Sensing Circuit For a Current-Mode Control CMOS DC-DC Buck Converter,” IEEE Int.Symp. on VLSI Design, Automation, and Test, pp.120–123, April 2005
    [11] F.-F. Ma, W.-Z. Chen, and J.-C. Wu, “A Monolithic Current-Mode Buck Converter With Advanced Control and Protection Circuit,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1836–1846, Sep. 2007.
    [12] K.–H. Chen, C.–J. Chang; T.–H. Liu, “ Bidirectional Current-Mode Capacitor Multipliers for On-Chip Compensation,” IEEE Trans. Power Electron., vol. 23, pp. 180 – 188, Jan. 2008
    [13] W.-R. Liou, M.-L. Yeh, and Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC for Portable Applications,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 667–677, Mar. 2008.
    [14] K.-H. Cheng, C.-W. Su, and H.-H. Ko, “Highly Accurate and Efficient Current-Mode PWM CMOS DC-DC Buck Converter With On-Chip Current-Sensing,” IEICE Trans. on Electronics , pp. 1941–1950, Dec. 2008.
    [15] Y.-H. Lee, Y.-Y. Yang, K.-H. Chen, Y.-H. Lin, S.-J. Wang, K.-L. Zheng, P.-F. Chen, C.-Y. Hsieh, Y.-Z. Ke, Y.-K. Chen, and C.-C. Huang, “A DVS Embedded Power Management for High Efficiency Integrated SoC in UWB System,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2227–2238, Nov. 2010.
    [16] J.Roh, “High-Performance Error Amplifier for Fast-Transient DC–DC Converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 9, pp.591–595, Sep. 2005
    [17] C.-L. Chen, W.-J. Lai, T.-H. Liu and K.-H. Chen”Zero Current Detection Technique for Fast Transient Response in Buck DC-DC Converters” IEEE Symposium on Circuits and Systems, May 2008, pp. 2214-2217.
    [18] Mishra, S.K., Ngo, K.D.T., “Dynamic Characterization of the Synthetic Ripple Modulator in a Tightly Regulated Distributed Power Application,” IEEE Trans. Industrial Electron., vol. 56, pp. 1164–1173, Apr. 2009
    [19] M. Wang, “Power Supply Design with Fast Transient Response Using V2 Control Scheme,” Proceedings of IIC China Conference, 1999
    [20] P. Y. Wu, P. K. T. Mok, “A Monolithic Buck Converter With Near-Optimum Reference Tracking Response Using Adaptive-Output-Feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2441–2450, Nov. 2007.
    [21] Y.Y. Mai and P.K.T. Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor,“IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 8, pp. 748-752, Aug., 2008.
    [22] Y.-H. Lee and S.-J. Wang and K.-H. Chen, “Quadratic Differential and Integration Technique in V2 Control Buck Converter With Small ESR Capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829 - 838, Apr. 2010.
    [23] C. H. Tso and J. C. Wu, "A Ripple Control Buck Regulator With Fixed Output Frequency," IEEE Power Electronics Letters, vol. 1, no. 3, pp. 61_63, Sept. 2003
    [24] F. Su, W.-H. Ki, C.-Y. Tsui, “Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008.
    [25] F. Su and W.-H. Ki, “Digitally Assisted Quasi-V2 Hysteretic Buck Converter with Fixed Frequency and without Using Large-ESR Capacitor” IEEE International Solid-State Circuits Conference, San Francisco, CA, USA,pp. 446 - 447,447a, Feb. 2009
    [26] P. Li, D.Bhatia, L. Xue, and R.Bashirullah, “A 90 - 240MHz Hysteretic Controlled DC-DC Buck Converter with Digital PLL Frequency Locking,” in Proc. Custom Integrated Circuits Conf., Sep. 2008, pp. 21–24.
    [27] H.-H. Huang, C.-L. Chen, and K.-H. Chen, “Adaptive Window Control (AWC) Technique for Hysteresis DC–DC Buck Converters with Improved Light and Heavy load performance,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1607–1617, Jun. 2009.
    [28] J.-J. Chen, “An Active Current-Sensing Constant-Frequency HCC Buck Converter Using Phase-Frequency-Locked Techniques,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 4, pp. 761-769, Apr. 2008.
    [29] J.-J. Chen, F.-C. Yang and, C.-C. Chen”A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits,” IEEE Trans. Industrial Electron., vol. 55, pp. 1101–1111, Mar. 2008.
    [30] X. Zhou, J. Fan, and A.Huang, “Monolithic DC Offset Self-Calibration Method for Adaptive On-Time Control Buck Converter, ” IEEE Energy Conversion Congress and Exposition(ECCE), San Jose, CA, pp.655-658, Sept. 2009
    [31] 左仲先, “應用於切換式直流至直流轉換器之高性能互補金氧半控制器” 國立交通大學博士論文, 2004
    [32] J. Fan, X. Li, J. Park and, A. Huang, “A Monolithic Buck Converter Using Differentially Enhanced Duty Ripple Control, ” in Proc. Custom Integrated Circuits Conf., Sep. 2008, pp. 21–24.
    [33] R. Redl and G. Reizik, “Switched Noise Filter for the Buck Converter Using the Output Ripple as the PWM Ramp,” in Proc. IEEE APEC’05, 2005, pp. 918-924.
    [34] T. Nabeshima, T. Sato, S. Yoshida, S. Chiba and K. Onda, “Analysis and Design Considerations of a Buck Converter with a Hysteretic PWM Controller,” Proceedings of Power Electronics Specialists Conference, pp.1711-1716, 2004.
    [35] R. Redl and J. Sun, “Ripple-Based Control of Switching Regulators — An Overview,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 2669 - 2680, Dec. 2009.
    [36] L.K. Wong and T.K. Man, “Steady State Analysis of Hysteretic Control Buck Converters, ” Power Electronics and Motion Control Conference, Sep. 2008,pp. 400–404
    [37] J. Sun, “Characterization and Performance Comparison of Ripple-Based Control for Voltage Regulator Modules,” IEEE Trans. on Power Electronics, vol. 21, no. 2, pp. 346–353, Mar. 2006.
    [38] Texas Instruement, “Designing Fast Response Synchronous Buck Regulators Using the TPS5210,” in TI App. Report, SLVA044, 1999.
    [39] Micrel, “MIC2164/-2/-3/C data sheet: constant frequency, synchronous buck controllers featuring adaptive on-time control,” Feb. 2010
    [40] National Semiconductor, “LM2696 data sheet: 3A, Constant On Time Buck Regulator,” May. 2009
    [41] S. Mappus, “Predictive gate drive boosts synchronous DC/DC power converter efficiency,” in TI App. Report, SLUA281, 2003.
    [42] S. Lee, S. Jung, C. Park, C.-T. Rim and, G.-H. Cho”Robust and Efficient Synchronous Buck Converter with Near-Optimal Dead-Time Control” IEEE International Solid-State Circuits Conference, San Francisco, CA, USA,pp. 392 - 394, Feb. 2011
    [43] M. Siu, P. K. T. Mok, K. N. Leung, Y. H. Lam, and W. H. Ki, “A voltage-mode PWM buck regulator with end-point prediction,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 53, no. 4, pp. 294-298, Apr. 2006.
    [44] P. Y. Wu, S. T. S. Tsui and, P.K.T. Mok, “Area- and Power-Efficient Monolithic Buck Converters With Pseudo-Type III Compensation,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1446–1455, Jan. 2004
    [45] J. Wang, J. Xu, G. Zhou and, B. Bao” Analysis of Pulse Bursting Phenomenon in Constant On-time Controlled Buck Converter,” Accepted to IEEE Trans. Industrial Electron., 2011.
    [46] R. Miftakhutdinov, “An Analytical Comparison of Alternative Control Techniques for Powering Next-Generation Microprocessors,” in TI App. Report, SLUP168, 2002.
    [47] J.-C. Tsai, C.-L. Chen, Y.-H. Lee, H.-Y. Yang, M.-S. Hsu, and K.-H. Chen,“ Modified Hysteretic Current Control (MHCC) for Improving Transient Response of Boost Converter” Accepted to IEEE Trans. Circuits Syst. I, 2011.
    [48] H.-C. Lin, B.-C. Fung, and T.-Y. Chang” A Current Mode Adaptive On-Time Control Scheme for Fast Transient DC-DC Converters” in Proc. IEEE International Symp. on Circuits and Syst., pp. 2602-2605, May 2008.
    [49] ON Semiconductor, “NCV8800 data sheet: Synchronous Buck Regulator with 1 Amp Switch, ”Sep. 2003
    [50] J. Li and F. C. Lee, “Modeling of V2 Current-Mode Control” IEEE Trans. Circuits and Systems-I, vol. 57, no. 9, pp. 2552-2563, Sep., 2010.
    [51] D. Goder, W. R. Pelletier, “V2 architecture provides ultra-fast transient response in switching-mode power supplies,” in Proc. High Freq. Power Conv. Conf., pp19-23, 1996
    [52] National Semiconductor, “LM27212 data sheet: Two-Phase Current-Mode Hysteretic Buck Controller,” March. 2006
    [53] R. Miftakhutdinov, “Analysis and optimization of synchronous buck converter at high slew-rate load current transients,” in Proc. of IEEE Power Electronics Specialists Conference, Vol. 2, pp. 714-720, 2000.
    [54] Chunping Song; Nilles, J.L., “ High-accuracy hysteretic current-mode regulator for powering microprocessors,” in Proc. IEEE APEC’06 Conf., pp. 506-509
    [55] S. Qu, “Modeling and design considerations of V2 controlled buck regulator,” in Proc. IEEE APEC’01 Conf., 2001, pp. 507–513
    [56] Chunping Song; J.L. Nilles, “Accuracy Analysis of Constant-On Current-Mode DC-DC Converters for Powering Microprocessors,” in Proc. IEEE APEC’09 Conf., 2009,pp. 97-101

    下載圖示 校內:2016-06-27公開
    校外:2016-06-27公開
    QR CODE