| 研究生: |
廖英凱 Liao, Yin-Kai |
|---|---|
| 論文名稱: |
具有漸變式與張力通道之變晶型高電子移動率電晶體的研製 Investigation of Graded and Tensile-strained Channel Metamorphic HEMTs |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 張力 、變晶型 、高電子移動率電晶體 |
| 外文關鍵詞: | tensile-strained, HEMT, metamorphic |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,為了改善傳統高電子移動率電晶體 (HEMT)閘極電壓擺幅太小的問題,我們採用了以磷化銦為基板並具有反向漸變式通道的高電子移動率電晶體(IGC-HEMT)。實驗的結果顯示,具有反向漸變式通道的高電子移動率電晶體除了提升閘極電壓擺幅外,同時具有極佳的熱穩定性。閘極擺幅電壓之所以會增加是因為閘極調變能力和電子飽和速度之間的平衡所造成;熱穩定性的提高則是因為反向漸變式通道提高了通道與阻擋層介面的導帶不連續,因此使通道侷限載子的能力提升所致。
反向漸變式通道中銦的含量隨深度增加而上升,電子飽和速度亦隨銦含量增加而遞增,這可補償閘極電極與等效二維電子氣位置間距因閘極電壓下降造成的增加。這使得元件即使操作在較寬的閘極電壓範圍下,轉導值都得以維持不變。反向漸變式通道中銦的含量隨深度增加而上升,使通道的能隙隨深度增加而遞減,最後在通道與阻擋層介面獲得了最大的導帶不連續。這提供了良好的侷限載子能力,進而使之具有極佳的熱穩定性。
IGC-HEMT的實驗結果如下: 飽和汲極電流(IDSS0 = 381 mA/mm)、異質轉導值(gm,max = 314 mS/mm),高頻特性 (fT = 46 GHz, fmax = 55 GHz)。崩潰電壓 (BVoff = 7.1 V),功率特性 (Pout = 12.8 dBm, power gain = 19.5 dB, P.A.E. = 42.0 %)。飽和汲極電流在420 K仍維持300 K時的90.7 %(IDSS0 = 345.4 mA/mm),異質轉導值在420 K也維持300 K時的94.4 %(gm,max = 296.4 mS/mm)。因此,具有反向漸變式通道的高電子移動率電晶體(IGC-HEMT)相當適合高溫方面的應用。
針對高移動率需使用高銦含量通道,使之無法得到大的崩潰電壓,因而使功率無法提升的問題,我們設計了「具有張力通道之變晶型高電子移動率電晶體」 (TS-MHEMT)。首先我們降低了通道中銦的含量來改善衝擊游離效應並進而提高崩潰電壓。藉由張力通道與V型漸變結構的幫助,仍可保持高電子移動率與高載子量。為了降低磷化銦基板的高成本,我們採用了以砷化鎵為基板的變晶式設計。
TS-MHEMT 的實驗如下:TS-MHEMT具有高飽和汲極電流(IDSS0 = 514 mA/mm)、高異質轉導值(gm,max = 404 mS/mm),及較佳的高頻特性 (fT = 58.5 GHz, fmax = 72.2 GHz)。崩潰電壓提升 (BVoff = 9.6 V),並進而改善了元件的功率特性 (Pout = 17.2 dBm, power gain = 21.1 dB, P.A.E. = 49.4 %)。因此,張力變晶型高電子移動率電晶體 (TS-MHEMT)可同時滿足高頻以及高功率方面的需求。
In this thesis, in order to improve the small gate voltage swing of conventional high electron mobility transistors (HEMT), we adopt the HEMT with inversely-graded channel (IGC-HEMT) grown on InP substrate. The experimental results show that the IGC-HEMT has not only wider gate voltage swing but also good thermal stability. The reason for the wider gate voltage swing is that the balance between gate modulation capability and electron saturation velocity. The reason for good thermal stability is that the inversely-graded channel increases the conduction band discontinuity (ΔEC) at the channel/barrier interface and therefore improves the carrier confinement.
The indium composition in the inversely-graded channel elevates with the increase of the depth and the electron saturation velocity also increases with the increase of the indium composition. The increase of electron saturation velocity can compensate for the increase of the distance from gate electrode to the effective 2-DEG position due to the decrease of gate voltage. This design makes the extrinsic transconductance unchanged even though the device is operated at wider gate voltage range. The indium composition in the inversely-graded channel elevates with the increase of the depth and therefore the bandgap decreases with the increase of the depth. Consequently, the maximum conduction band discontinuity is achieved at the channel/barrier interface. The maximum conduction band discontinuity provides good carrier confinement; hence, it has excellent thermal stability.
The experimental results of IGC-HEMT are as follows: The drain-source saturation current density at VGS = 0 V (IDSS0), extrinsic transconductance (gm,max), fT, and fmax are 381 mA/mm, 314 mS/mm, 46 GHz and 55 GHz. The off-state breakdown voltage, maximum output power (Pout), associated gain (GA) and power added efficiency (P.A.E.) are 7.1 V, 12.8 dBm, 19.5 dB and 42.0 %. The IDSS0 at 420 K maintains at 90.7 % of the value at 300 K and the gm,max also maintains at 94.4 % of the value at 300 K. Therefore, the IGC-HEMT is suitable for high-temperature applications.
In order to solve the problem that high mobility comes from In-rich channel which leads to small breakdown voltage, we design the “Tensile-strained metamorphic HEMT” (TS-MHEMT). First, we decrease the Indium composition in the channel to reduce impact ionization and increase breakdown voltage. High mobility and high carrier concentration are still maintained because of the tensile-strained channel and “V”-shaped graded channel structure. Additionally, we adopt the design which uses metamorphic HEMT grown on GaAs substrate to decrease the cost.
The experimental results of TS-MHEMT are as follows: TS-MHEMT has high drain-source saturation current density (IDSS0 = 514 mA/mm), high extrinsic transconductance (gm,max = 404 mS/mm) and better microwave characteristics (fT = 58.5 GHz and fmax = 72.2 GHz). The breakdown voltage is elevated and therefore improve the power characteristics (Pout = 17.2 dBm, GA = 21.1 dB, P.A.E. = 49.4 %). Consequently, the tensile-strained metamorphic HEMT can fulfill the requirement of high-frequency and high-power at the same time.
[1] C. Nguyen and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers,” IEEE Trans. Electron. Devices, vol. 48, no. 4, pp. 472–478, 2001.
[2] C. Y. Chang and F. Kai, GaAs High-Speed Devices, New York: Wiley, pp. 365-366, 1994.
[3] S. M. Sze, Semiconductor devices Physics and Technology, New York: Wiley, pp. 246-251, 2002.
[4] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu and Y. J. Chen, “Characteristics of In0.52Al0.48As/InxGa1−xAs HEMT’s with various InxGa1−xAs channels,” Solid-State Electronic., vol. 48, pp. 119-124, 2004.
[5] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu and Y. H. Wu, “On the Improvement of Gate Voltage Swings in δ-Doped GaAs/InxGa1-xAs/GaAs Pseudomorphic Heterostructures,” IEEE Electron Device Lett., vol. 40, pp. 1630-1635, 1993.
[6] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin and C. L. Wu, “Characteristics of In0.425Al0.575As-InxGa1-xAs metamorphic HEMTs with pseudomorphic and symmetrically graded channels,” IEEE Trans. Electron Devices, vol. 52, pp.1079-1086, 2005.
[7] D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang and Y. K. Liao, “Comparative study of In0.52Al0.48As/InxGa1−xAs/InP high-electron-mobility transistors with a symmetrically graded and an inversely graded channel”, Semicond. Sci. and Technol., vol. 21, no. 6, pp. 781-785, 2006.
[8] M. Boudrissa, E. Delos, Y. Cordier, D. Théron, and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 512–514, 2000.
[9] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura, “Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate,” IEEE Trans. Electron Devices, vol. 49, no. 12, pp. 2237–2243, 2002.
[10] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si n-MOSFETs,” IEEE Trans. Electron Devices, vol. 47, no. 7, pp. 1406–1415, 2000.
[11] Ch. Köpf, H. Kosina and S. Selberherr, “Physical models for strained and relaxed GaInAs alloys: Band structure and low-field transport,” Solid-State Electron., vol.41, pp. 1139-1152, 1997.
[12] W. E. Hoke, P. S. Lyman, J. J. Mosca, H. T. Hendriks, and A. Torabi, “Improved pseudomorphic high electron mobility transistor structures on InGaAs substrates,” J. Appl. Phys., vol. 81, no. 2, pp. 968–973, 1997.
[13] G. H. Martint, A. Lepore, M. Seaford, B. Pereiaslavets, R. M. Spencer, and L. F. Eastman, “High temperature operation of AlInAs/In-GaAs/AlInAs 3D-SMODFETs with record two-dimensional electron gas densities,” in IEDM Tech. Dig., pp. 39–42, 1996.
[14] S. Babiker, A. Asenov, S. Roy, J. R. Barker, and S. P. Beaumont, “Strain engineered InxGa1-x As channel pHEMTs on virtual substrates: a simulation study,” Comput. Electron., vol. IWCE-6, pp. 178–181, 1998.
[15] W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Performance Improvement in Tensile-Strained In0.5Al0.5As/InxGa1-xAs/In0.5Al0.5As Metamorphic HEMT,” IEEE Trans. Electron Devices, vol. 53, no. 3, pp. 406–412, 2006.
[16] K.Kiziloglu, H. Ming, D. S. Harvey, R. D. Widman, C. E. Hooper, P. B. Janke, J. J. Brown, L. D. Nguyen, D. P. Docter, S. R. Burlchart, “High-Performance AlGaAs/InGaAs/GaAs PHEMTs for K and Ka-Band Applications,” IEEE MTT-S International, vol. 2, pp. 681-684, 1999.
[17] J. H. Lee, H. S. Yoon, C. S. Park and H. M. Park, “Very Low Noise Characteristics of AlGaAs/InGaAs HEMTs with Wide Head T-Gate,” in Device Research Conference Dig., pp. 36-37, 1995.
[18] S. R. Bahl and J. A. del Alamo, “A New Drain-Current Injection Technique for the Measurement of Off-State Breakdown Voltage in FET’s,” IEEE Trans. Electron Devices, vol. 40, no. 8, pp. 1558–1560, 1993.
[19] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As–InxGa1-xAs Metamorphic HEMTs With Pseudomorphic and Symmetrically-graded Channels,” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1079–1086, 2005.
[20] Y. J. Chen, C. S. Lee, T. B. Wang, W. C. Hsu, Y. W. Chen, K. H. Su and C. L. Wu, “Improved In0.45Al0.55As/In0.45Ga0.55As/In0.65Ga0.35As Inverse Composite Channel Metamorphic High Electron Mobility Transistor,” Jpn, J. Appl. Phys., vol. 41, pp. 5903-5908, 2005.
[21] F. Ali and A. Gupta, HEMTs and HBTs: Devices, Fabrication, and Circuits, Norwood: Artech House, pp.81-82, 1991.
[22] A. Fathimulls, J. Abrahams, T.Loughran, H.Hier, “High performance InAlAs/InGaAs HEMTs and MESFETs,” IEEE. Electron Device Lett., vol. 9, pp. 328-330, 1988.
[23] S. R. Bahl, J.A. del Alamo, “Elimination of mesa sidewall gate leakage in InAlAs/InGaAs HFETs,” IEEE Trans. Electron Devices, vol. 13, no. 4, pp. 195-197, 1992.
[24] S. R. Bahl, B.R. Bernett, J. A. Alamo, “Doubly strained In0.41Al0.59As/n+-In0.65Ga0.35As HFET with high breakdown voltage,” IEEE. Electron Device Lett., vol. 14, no. 1, pp. 22-24, 1993.
[25] M. H. Somerville, R. Blanchard, J. A. del Alamo, K. G. Duh, and P. C. Chao, “On-state breakdown in power HEMTs: measurements and modeling,” IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1087–1093, 1999.
[26] M. H. Somerville, R. Blanchard, J. A. del Alamo, K. G. Duh, and P. C. Chao, “A new gate current extraction technique for measurement of on-state breakdown voltage in HEMTs,” IEEE Electron Device Lett.,” vol. 19, no. 11, pp. 405–407, 1998.
[27] K. Yuan, K. Radhakrishnan, H. Q. Zheng, S. F. Yoon, “Novel In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistors on GaAs substrate with InxGa1-xP graded buffer layers,” Materials Science in Semiconductor Processing, vol. 4, pp. 641–645, 2001.
[28] M. Han, M. S. Son, J. H. Oh, B. H. Lee, M. R. Kim, S. D. Kim, J. K. Rhee, “Optimization of sub-0.1-mm offsetΓ-shaped gate MHEMTs for millimeter-wave applications,” Microelectronics Journal, vol. 35, pp. 973–983, 2004.
[29] C. K. Lin, J. C. Wu, W. K. Wang, Y. J. Chan, J. S. Wu, Y. C. Pan, C. C. Tsai, and J. T. Lai, “Performance Enhancement by the In0.65Ga0.35As Pseudomorphic Channel on the In0.5Al0.5As Metamorphic Buffer Layer,” IEEE Trans. Electron Devices, vol. 51, no. 7, pp. 1214-1217, 2004.
[30] R. Soares, GaAs MESFET Circuit Design, Boston and London: Artech House, pp. 287-290, 1988.