簡易檢索 / 詳目顯示

研究生: 陳煥清
CHEN, Huan-Ching
論文名稱: 利用 InSAR 與地層監測井計算彈性儲水係數與儲水變化量:以雲林地區為例
Estimation of the Elastic Storage Coefficient and Groundwater Storage Variations by integrating InSAR and Extensometer Data: A Case Study in Yunlin, Taiwan
指導教授: 羅偉誠
Lo, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 76
中文關鍵詞: 地層下陷可回復儲水變化量彈性儲水係數InSAR
外文關鍵詞: InSAR, GNSS, land subsidence, aquifer storage
相關次數: 點閱:23下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對雲林地區長期且嚴重的地層下陷問題,整合 Sentinel-1A 時序雷達影像、GNSS 垂直位移資料、磁環分層監測井與地下水位觀測井等多源資料,建立一套分層彈性儲水係數推估與儲水變化量空間化分析流程。研究首先透過 GMTSAR 軟體完成 2016–2024 年之 InSAR 累積與年均變形圖,顯示研究區中西部下陷明顯,年最大沉陷速率高達 6.5 cm/yr。為提升變形資料準確性,本研究以 GNSS–InSAR 差值建立誤差場,並應用 Kriging 進行修正,進一步整合磁環分層井沉陷量與地下水位變化,分別於三層主要含水層推估其分層彈性儲水係數,建立區域空間分布。結合分層彈性儲水係數值與InSAR位移圖,並利用 IDW 進行區域內插,建立分層空間化模型,推估各層可回復儲水變化量。
    在修正後的變形資料基礎上,本研究結合磁環分層井沉陷量與地下水位變化,於三層主要含水層分別推估彈性儲水係數,並建立其區域分布。進一步將彈性儲水係數與 InSAR 位移圖結合,利用 IDW 內插建立分層空間化模型,以推估不同含水層的 可回復儲水變化量,分析結果顯示,第二含水層(F2)為主要貢獻層,其平均 ∆V_r 達 27.15 mm,佔總量比例最高;第一含水層(F1)平均 ∆V_r 為 16.59 mm;第三含水層(F3)平均 ∆V_r 為 14.24 mm,變化幅度最小,顯示第三含水層含水層對可回復儲水量的影響有限,整體比較結果呈現 F2 > F1 > F3,凸顯 F2 在雲林地區可回復儲水變化量最大。
    本研究突破傳統僅以單一含水層估算的限制,首次建立「分層∆V_r貢獻度」之空間分布觀測,補足了傳統井測點不足的問題,並能更精確地揭示不同含水層在地層下陷與地下水儲量變化中的貢獻差異。研究成果不僅具創新性,也對雲林地區地下水管理與地層下陷防治具有重要的實務應用價值。

    This study addresses the severe land subsidence in Yunlin County by integrating Sentinel-1A time-series radar imagery, GNSS vertical displacement data, magnetic-ring layered monitoring wells, and groundwater level observations. A comprehensive workflow was developed to estimate elastic storage coefficientsfor individual aquifer layers and to quantify spatial variations in recoverable groundwater storage change.Time-series InSAR analysis using GMTSAR produced cumulative deformation and annual subsidence maps for 2016–2024, revealing significant subsidence in the central-western region, with maximum annual rates reaching 6.5 cm/yr. GNSS–InSAR displacement differences were used to construct an error field, and Kriging interpolation was applied for pixel-level corrections, improving the absolute accuracy of InSAR-derived deformation data.
    The results show that the second aquifer (F2) contributes most significantly to recoverable storage changes, with an average ∆V_r of 27.15 mm, followed by F1 (16.59 mm) and F3 (14.24 mm), indicating a limited response of deeper strata. These findings highlight the dominant role of F2 in groundwater storage dynamics.
    This research establishes the first spatially explicit assessment of layered ∆V_r contributions in Yunlin County, overcoming limitations of traditional single-layer estimations. The outcomes provide a scientific foundation for improved groundwater management and effective subsidence mitigation strategies.

    摘要I AbstractII 致謝IX 目錄X 圖目錄XII 表目錄XIV 第一章 緒論1 1-1 研究動機及目的1 1-2 研究架構與流程3 第二章 文獻回顧5 2-1 地層下陷成因與全球案例回顧5 2-2 台灣地層下陷現況與雲林問題特性6 2-3 InSAR 技術原理與地表變形應用發展6 2-4 InSAR 與井測/GNSS 資料整合於地下水監測應用之研究發展10 2-5 儲水係數估算方法回顧 12 第三章 研究區域16 3-1 雲林縣16 3-2 地質與地形背景說明17 3-3 含水層分布概況19 3-4 Sentinel-1A 衛星資料說明21 3-5 全球衛星定位系統(GNSS)資料說明26 3-6 地層下陷監測井27 第四章 研究方法31 4-1 InSAR 處理流程(使用 GMTSAR 處理)31 4-2 GNSS校正31 4-3 Sentinel-1A資料處理流程34 4-3-1 前處理階段(PREP)34 4-3-2 干涉圖生成與相位處理(PROC)34 4.4.3小基線時序(SBAS)35 4-4 InSAR 累積垂直變形圖(2016–2024,未經修正)35 4-5 InSAR–GNSS 誤差修正與空間補償方法36 4-6 可回復儲水變化量(∆Vr)之推估方法與理論依據47 4-6-1 利用 InSAR 位移圖與分層沉陷比例反推出可回復儲水變化量分布48 結論與建議56 5-1 結論 56 5-2 建議 57 參考文獻58

    [1] Bekaert, D. P., Hooper, A., & Wright, T. J. (2015). A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth, 120(2), 1345–1356.
    [2] Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383.
    [3] Burbey, T. J. (2006). Loss of aquifer storage capacity from land subsidence in Las Vegas Valley, Nevada, USA. Hydrogeology Journal, 14, 471–486.
    [4] Burbey, T. J. (2020). Parameter estimation of a multiple aquifer-aquitard system from a single extensometer record: Las Vegas, Nevada, USA. Proceedings of the IAHS, 382, 51–56.
    [5] Chen, M.-X., Lees, M., & Knight, R. (2023). Integrating shallow head measurements and InSAR data to quantify groundwater-storage change in San Joaquin Valley, California (USA). Hydrogeology Journal, 31, 2041–2060.
    [6] Chen, T. H., Liu, H. H., & Chang, C. P. (2022). Estimation of storage coefficient from InSAR-derived deformation and groundwater level data in western Taiwan. Hydrogeology Journal, 30(2), 591–604.
    [7] Chen, J., Knight, R., Zebker, H. A., & Schreüder, W. A. (2016). Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resources Research, 52(5), 3623–3636.
    [8] 陳文福、江崇瑞(1999)。《地質報告》。工業技術研究院。
    [9] Chen, Y.-A., Chang, C.-P., Hung, W.-C., Yen, J.-Y., Lu, C.-H., & Hwang, C. (2021). Space time evolutions of land subsidence in the Choushui River alluvial fan (Taiwan) from multiple sensor observations. Remote Sensing, 13(12), 2281.
    [10] Crosetto, M., Crippa, B., & Biescas, E. (2008). Early detection and in-depth analysis of deformation phenomena by radar interferometry. Engineering Geology, 97(3–4). https://doi.org/10.1016/j.enggeo.2008.01.003
    [11] Famiglietti, J. S., et al. (2011). Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters, 38(3).
    [12] Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20.
    [13] Fuhrmann, T., Gisinger, C., Knöpfler, A., Lim, M., & Westerhaus, M. (2015). Validation of atmospheric phase screen models by GNSS and leveling data for improved InSAR deformation monitoring. Journal of Applied Geodesy, 9(3), 157–169.
    [14] Ghobadi-Far, K., Werth, S., Shirzaei, M., & Bürgmann, R. (2023). Spatiotemporal groundwater storage dynamics and aquifer mechanical properties in the Santa Clara Valley inferred from InSAR deformation over 2017–2022. Geophysical Research Letters, 50(19), e2023GL105157.
    [15] Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas – differential radar interferometry. Journal of Geophysical Research, 94(B7), 9183–9191.
    [16] Galloway, D., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States. U.S. Geological Survey Circular 1182.
    [17] Herrera-García, G., et al. (2021). Mapping the global threat of land subsidence. Science, 371(6524), 34–36.
    [18] Hung, W. C., Lin, Y. N., & Lee, C. W. (2020). Characterizing spatiotemporal patterns of subsidence using InSAR and GNSS in Southern Taiwan. Engineering Geology, 270, 105586.
    [19] Li, Z., Fielding, E. J., Cross, P., & Preusker, R. (2009). Studying long-term subsidence using InSAR and GPS. Journal of Geophysical Research: Solid Earth, 114(B11).
    [20] Liu, H., et al. (2021). Ground deformation analysis using DS-InSAR and borehole data in the Yellow River Basin. Remote Sensing, 13(3), 402.
    [21] Minh, D. H. T., Hanssen, R., & Rocca, F. (2020). Radar interferometry: 20 years of development in time series techniques and future perspectives. Remote Sensing, 12(9).
    [22] Morishita, Y., Lazecky, M., Wright, T. J., et al. (2020). LiCSBAS: Open-source InSAR time series analysis integrated with LiCSAR. Remote Sensing, 12(3).
    [23] Motagh, M., et al. (2008). Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35(L16403).
    [24] Rateb, A., & Abotalib, A. Z. (2020). Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Science of the Total Environment, 729, 138868. https://doi.org/10.1016/j.scitotenv.2020.138868
    [25] Richey, A. S., et al. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238.
    [26] Sadeghi, Z., Wright, T. J., Hooper, A., et al. (2021). Benchmarking and inter-comparison of Sentinel-1 InSAR time series. Remote Sensing of Environment, 256.
    [27] Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Wiley Online Library.
    [28] Shirzaei, M., & Bürgmann, R. (2013). Time-series analysis of multi-temporal InSAR data: Correction of systematic errors, atmospheric effects, and modeling of deformation sources. Journal of Geophysical Research: Solid Earth, 118(7).
    [29] Smith, R. G., Hashemi, H., Chen, J., & Knight, R. (2021). Apportioning deformation among depth intervals in an aquifer system using InSAR and head data. Hydrogeology Journal, 29(7), 2475–2486.
    [30] Smith, R. G., & Knight, R. (2022). Groundwater storage dynamics and aquifer mechanical properties in the Santa Clara Valley from 2017 to 2022 InSAR deformation. EarthArXiv Preprint. https://doi.org/10.31223/X59C7N
    [31] Tangdamrongsub, N., et al. (2016). Disaggregation of GRACE terrestrial water storage data using a Bayesian approach: Application to the Lower Mekong Basin. Water Resources Research, 52(11), 8953–8970.
    [32] Tosi, L., Teatini, P., Strozzi, T., & Carbognin, L. (2013). Natural versus anthropogenic subsidence of Venice. Scientific Reports, 3, 2710.
    [33] Tseng, K. C., Su, C. Y., & Hsu, Y. J. (2023). Quantifying aquifer system compressibility and recovery using Sentinel-1 InSAR data: A case study from coastal Taiwan. Remote Sensing of Environment, 289, 113403.
    [34] Voss, K. A., et al. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management. Water Resources Research, 49(2), 904–914.
    [35] Yagüe-Martínez, N., et al. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220–2235.
    [36] Yang, C. H., Lin, S. T., & Chen, C. C. (2019). Monitoring land subsidence and groundwater level variation in Yunlin, Taiwan using InSAR time series analysis. Remote Sensing, 11(14), 1693.
    [37] Zaki, A., Chang, L., Manzella, I., et al. (2024). Automated Python workflow for generating Sentinel-1 PSI and SBAS interferometric stacks using SNAP. Environmental Modelling and Software, 178, 106075.
    [38] Zhao, X., Tang, W., Hao, G., et al. (2025). Characterizing aquifer properties in the Taiyuan Basin using Sentinel-1 InSAR. Journal of Hydrology: Regional Studies, 58, 102313.
    [39] 林志森(2021)。應用監測資料探討雲林地區地層下陷之趨勢。國立高雄科技大學營建工程系碩士論文。
    [40] 陳志南(2021)。雲林地層下陷之脆弱度評估與地理加權迴歸分析。
    [41] 經濟部水利署(2023)。《尖端地層下陷防治技術整合研究技術論壇展成果》。
    [42] 經濟部水利署(2024)。《地層下陷狀況》。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE