| 研究生: |
張倚華 Chang, Yi-Hua |
|---|---|
| 論文名稱: |
應用混層式設計方法之數位控制電源轉換晶片設計 Digitally-Controlled Power Converter IC Design Using Mixed-Level Design Methodology |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 數位控制降壓型轉換器 、混合訊號 、Top-down混層式設計驗證流程 |
| 外文關鍵詞: | Buck converter, Digital control, Mixed-level design methodology, Verilog-AMS |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用Top-down混層式設計驗證流程實現一個針對可攜式產品應用之數位控制降壓型電源轉換晶片,使用製程為TSMC 0.18-μm 1P6M CMOS製程,除外掛電感、電容外,其餘電路都整合於晶片中。
設計流程一開始無論類比或數位電路都先用Verilog-AMS建立行為模型,並過頂層驗證訂出子電路之規格,類比電路以此選擇適當電路架構進行電晶體層級的設計;數位電路著手撰寫硬體描述語言(Verilog),再進行數位電路合成得到電晶體層級之電路。完成全系統電晶體層級設計後,開始進行佈局設計並整合於同一晶片中,驗證系統正確且符合規格後即可進行下線動作完成晶片設計。
使用行為模型除了能減少初期混合訊號電路頂層驗證所需模擬時間,也可在滿足系統效能條件下獲得最低限度子電路之規格,避免Over-design。搭配混層式驗證逐步將完成設計之電晶體電路代換原本的行為模型區塊,並且能在代換過程立刻知道電晶體電路之功能是否符合預期,能降低除錯難度加速晶片設計時間。
在降壓型轉換器晶片中,功率開關之面積及功耗皆佔大部分,因此設計功率開關之尺寸為關鍵所在。本論文以全負載範圍滿足效率規格為前提,考慮與電晶體尺寸相關之損耗作分析得最佳電晶體設計尺寸,除了能減少晶片面積也能滿足低功耗之要求。
In this thesis, we realized a mixed-level design methodology to design a digitally-controlled buck converter for portable devices application. The chip was manufactured by TSMC 0.18-μm CMOS process technology. In addition to the external inductance and capacitance, the rest of the circuit were integrated in the chip.
At the beginning of the design, we build the behavioral models for both analog and digital circuits. Then, we can set specifications of the sub-circuit through the top-level verification. Based on specifications, analog circuits select appropriate circuit architectures for transistor-level circuit design, and digital circuits start to write a hardware description language (Verilog), and futher synthesis to transistor-level circuit. After complete the whole system transistor-level design, we integrate all the sub-circuits in the same chip. Finally, we verify the results of the system and check whether the performance meet the specifications.
Using the behavioral model can not only reduce lots of simulation time in the beginning of top-level verification, but also obtain the adequate sub-circuit specifications which can avoid over-design. By replacing the transistor-level circuits with behavioral-level circuits gradually, we can immediately know whether the function of the transistor circuit is work or not, which reduce the time to debug and accelerate the design time.
[1] M. S. McCorquodale, F. H. Gebara, K. L. Kraver, E. D. Marsman, R. M. Senger, and R. B. Brown, "A top-down microsystems design methodology and associated challenges," in 2003 Design, Automation and Test in Europe Conference and Exhibition, 2003, pp. 292-296 suppl.
[2] K. Kundert, "A Formal Top-Down Design Process for Mixed-Signal Circuits," Advances in Analog Circuit Design, Apr. 2000.
[3] S. Guo, Y. Gao, Y. Xu, X. Lin-Shi, and B. Allard, "Digital PWM controller for high-frequency low-power DC-DC switching mode power supply," in 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 1340-1346.
[4] L. Corradini, A. Bjeletić, R. Zane, and D. Maksimović, "Fully Digital Hysteretic Modulator for DC-DC Switching Converters," IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 2969-2979, 2011.
[5] S. Cliquennois, A. Donida, P. Malcovati, A. Baschirotto, and A. Nagari, "A 65-nm, 1-A Buck Converter With Multi-Function SAR-ADC-Based CCM/PSK Digital Control Loop," IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1546-1556, 2012.
[6] Y. S. Hwang, A. Liu, Y. B. Chang, and J. J. Chen, "A High-Efficiency Fast-Transient-Response Buck Converter with Analog-Voltage-Dynamic-Estimation Techniques," IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3720-3730, 2015.
[7] Y. Katayama, M. Edo, T. Denta, T. Kawashima, and T. Ninomiya, "Optimum design method of CMOS IC for DC-DC converter that integrates power stage MOSFETs," in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, vol. 6, pp. 4486-4491.
[8] Y. Changsik, "A CMOS buffer without short-circuit power consumption," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 9, pp. 935-937, 2000.
[9] R. Modak and M. S. Baghini, "A generic analytical model of switching characteristics for efficiency-oriented design and optimization of CMOS integrated buck converters," in 2009 IEEE International Conference on Industrial Technology, 2009, pp. 1-6.
[10] S. Kim and G. A. Rincón-Mora, "Efficiency of switched-inductor dc-dc converter ICs across process technologies," in 2012 IEEE International Symposium on Circuits and Systems, 2012, pp. 460-463.
[11] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell: Kluwer Academic Publishers, 2001.
[12] K. h. Chen, C. c. Chien, C. h. Hsu, and L. r. Huang, "Optimum power-saving method for power MOSFET width of DC/DC converters," IET Circuits, Devices & Systems, vol. 1, no. 1, pp. 57-62, 2007.
[13] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang, and I. Batarseh, "Analysis and Design of Voltage Regulator With Adaptive FET Modulation Scheme and Improved Efficiency," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, 2008.
[14] 林詩梅, "具快速響應之電流模式及遲滯定頻降壓型轉換器," 國立成功大學電機工程學系碩士論文, 2014.
[15] A. Prodic, D. Maksimovic, and R. W. Erickson, "Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter," in Industrial Electronics Society, 2001. IECON '01. The 27th Annual Conference of the IEEE, 2001, vol. 2, pp. 893-898 vol.2.
[16] A. V. Peterchev, X. Jinwen, and S. R. Sanders, "Architecture and IC implementation of a digital VRM controller," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 356-364, 2003.
[17] X. Jinwen, A. V. Peterchev, Z. Jianhui, and S. R. Sanders, "A 4-uA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications," IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2342-2348, 2004.
[18] A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters," in 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proceedings., 2002, pp. 18-22.
[19] A. Hande and S. Kamalasadan, "System modeling and design considerations for point-of-load digital power supplies," in 2008 34th Annual Conference of IEEE Industrial Electronics, 2008, pp. 1004-1009.
[20] C. H. Yang, C. N. Liu, and C. H. Tsai, "Direct digital compensator design for switching converters," in 2010 International Symposium on Next Generation Electronics, 2010, pp. 143-146.
[21] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301-308, 2003.
[22] A. Syed, E. Ahmed, D. Maksimovic, and E. Alarcon, "Digital pulse width modulator architectures," in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, vol. 6, pp. 4689-4695 Vol.6.
[23] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, "High-frequency digital PWM controller IC for DC-DC converters," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 438-446, 2003.
[24] Z. Lukic, N. Rahman, and A. Prodie, "Multibit Sigma-Delta PWM Digital Controller IC for DC-DC Converters Operating at Switching Frequencies Beyond 10 MHz," IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1693-1707, 2007.
[25] 梁沛基, "數位三角積分脈波寬度調變控制之1MHz直流-直流切換式電源轉換器設計," 國立成功大學電機工程學系碩士論文, 2008.
[26] B. Li, S. Guo, X. Lin-Shi, and B. Allard, "MASH Delta-Sigma DPWM based sliding-mode controller dedicating to high frequency SMPS," in Proceedings of the 2011 14th European Conference on Power Electronics and Applications, 2011, pp. 1-9.
[27] W. Chao, Z. Dong-lai, and L. Tie-cai, "Timing scheme of floating-point based digital controller for DC-DC Converters," in 2012 IEEE International Symposium on Industrial Electronics, 2012, pp. 566-571.
[28] N. Anabtawi and R. Ferzli, "A simplified single-inductor dual-output DC-DC buck converter architecture with a fully digital sigma-delta based controller," in Sixteenth International Symposium on Quality Electronic Design, 2015, pp. 82-85.
[29] K. S. Rao and V. S. Chakravarthi, "FPGA implementation of voltage regulator module for system on chip," in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 2015, pp. 297-302.
[30] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: Wiley, 2005.
[31] A. Prodic and D. Maksimovic, "Mixed-signal simulation of digitally controlled switching converters," in 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proceedings., 2002, pp. 100-105.
[32] 陳柏銘, "具無電流感測適應性電壓位置機制之數位式降壓型轉換器," 國立成功大學電機工程學系碩士論文, 2015.
[33] ROHM Semiconductor. RTR040N03TL. "2.5V Drive Nch MOSFET" [Online]. Available: http://www.rohm.com.tw/web/taiwan/products/-/product/RTR040N03
[34] Microchip. TC4420. "6A High-Speed MOSFET Drivers" [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/21419D.pdf
[35] ANALOG DEVICES. AD7822. "3 V/5 V, 2 MSPS, 8-Bit, 1-/4-/8-Channel Sampling ADCs" [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/AD7822_7825_7829.pdf
[36] "CIC Referenced Flow for Mixed-signal IC Design," Technical Report, CIC-DSD-RD-08-02, National Chip Implementation Center, Hsinchu, Taiwan, 2008.
[37] I. Miller and T. Cassagnes, "Verilog-A and Verilog-AMS provides a new dimension in modeling and simulation," in Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474), 2000, pp. C49/1-C49/6.
[38] G. J. Coram, "How to (and how not to) write a compact model in Verilog-A," in Proceedings of the 2004 IEEE International Behavioral Modeling and Simulation Conference, 2004. BMAS 2004., 2004, pp. 97-106.
[39] F. Pecheux, C. Lallement, and A. Vachoux, "VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 2, pp. 204-225, 2005.
[40] I. Miller and A. Ferreira-Noullet, "Behavioral modeling in industrial IC design experiences and observations," in Proceedings of the 2004 IEEE International Behavioral Modeling and Simulation Conference, 2004. BMAS 2004., 2004, pp. 37-40.
[41] H. p. Forghani-Zadeh and G. a. Rincon-Mora, "Fast and reliable top-level simulation strategy for mixed-signal integrated circuits and its application to DC-DC converters," IET Circuits, Devices & Systems, vol. 1, no. 2, pp. 143-150, 2007.
[42] K. Watanabe, M. Abe, T. Sai, and Y. Sugimoto, "A fast and precise circuit simulation method for switching power converters using a mixture of circuits and behavioral models," in 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2014, pp. 579-582.
[43] L. Laguna, R. Prieto, J. Oliver, and J. Cobos, "Top-down methodology employing hardware description languages (HDLs) for designing digital control in power converters," in 2008 11th IEEE International Power Electronics Congress, 2008, pp. 133-137.
[44] S. Jovanovic and P. Poure, "Design of power electronic digital controller based on FPGA/SOC using VHDL-AMS language," in 2007 IEEE International Symposium on Industrial Electronics, 2007, pp. 2301-2306.
[45] T. Sai, S. Sugimoto, and Y. Sugimoto, "A Precision and High-Speed Behavioral Simulation Method for Transient Response and Frequency Characteristics of Switching Converters," IEICE Transactions on Electronics, vol. E95-C, No.6, pp. 1067-1076, Jun. 2012.
[46] E. Martin and C. Ferrer, "DC DC converter modelling with VHDL-AMS," in IEEE International Conference on Industrial Technology, 2003, 2003, vol. 2, pp. 766-771.
[47] L. A. Barragan, I. Urriza, D. Navarro, J. I. Artigas, J. Acero, and J. M. Burdio, "Comparing simulation alternatives of FPGA-based controllers for switching converters," in 2007 IEEE International Symposium on Industrial Electronics, 2007, pp. 419-424.
[48] M. Agostinelli, R. Priewasser, M. Huemer, S. Marsili, and D. Straeussnigg, "SystemC-AMS modeling and simulation of digitally controlled DC-DC converters," in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 170-175.
[49] C. D. G. Vladimir, T. J. Manuel, B. B. Héctor, Z. T. Erwin, Q. M. Félix, and L. A. M. Fernanda, "Modeling and simulation of a MOSFET transistor in Verilog-A considering parasite elements," in 2015 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), 2015, pp. 1-5.
[50] L. Dobrescu, D. Tudora, and D. Dobrescu, "Power MOSFET Verilog modelling," in 2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC), 2016, pp. 173-176.
[51] Infineon Technologies. IPD050N03L G. "OptiMOS®3 Power-Transistor" [Online]. Available: http://www.infineon.com/dgdl/Infineon-IPD050N03LG-DS-v02_00-en.pdf?fileId=db3a30432313ff5e01239e47dbfe701f
[52] S. Bandyopadhyay, Y. K. Ramadass, and A. P. Chandrakasan, "20uA to 100mA DC-DC converter with 2.8 to 4.2V battery supply for portable applications in 45nm CMOS," in 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 386-388.
[53] Y. Ahn, H. Nam, and J. Roh, "A 50-MHz Fully Integrated Low-Swing Buck Converter Using Packaging Inductors," IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4347-4356, 2012.
[54] V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman, "Monolithic DC-DC converter analysis and MOSFET gate voltage optimization," in Fourth International Symposium on Quality Electronic Design, 2003. Proceedings., 2003, pp. 279-284.
[55] V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman, "Low-voltage-swing monolithic dc-dc conversion," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no. 5, pp. 241-248, 2004.
[56] T. Takayama and D. Maksimović, "A power stage optimization method for monolithic DC-DC converters," in 2006 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1-7.
[57] V. Costa, P. M. Santos, and B. Borges, "Design method for monolithic DC-DC converters based on the losses optimization of the power stage," in APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, 2008, pp. 1872-1875.
[58] J. Hannon, D. O. Sullivan, R. Foley, J. Griffiths, K. G. McCarthy, and M. G. Egan, "Design and optimisation of a high current, high frequency monolithic buck converter," in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1472-1476.
[59] D. Wen, "Analysis of Buck Converter Efficiency," Application Note, AN005, Richtek Technology Corporation, 2014.
[60] J. F. d. Rocha, M. B. d. Santos, J. M. D. Costa, and F. A. Lima, "Level Shifters and DCVSL for a Low-Voltage CMOS 4.2-V Buck Converter," IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3315-3323, 2008.
[61] A. J. Stratakos, S. R. Sanders, and R. W. Brodersen, "A low-voltage CMOS DC-DC converter for a portable battery-operated system," in Power Electronics Specialists Conference, PESC '94 Record., 25th Annual IEEE, 1994, pp. 619-626 vol.1.
[62] A. A. Fomani and W. T. Ng, "A segmented gate driver with adjustable driving capability for efficiency optimization," in The 2010 International Power Electronics Conference - ECCE ASIA -, 2010, pp. 1646-1650.
[63] G. Villar, E. Alarcon, J. Madrenas, F. Guinjoan, and A. Poveda, "Energy optimization of tapered buffers for CMOS on-chip switching power converters," in 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 4453-4456 Vol. 5.
[64] M. Lauer, "Power Topology – Buck Converter," Application Report, SLVA432, Texas Instruments, 2010.
[65] MAXIM.MAX15301. "InTune Automatically Compensated Digital PoL Controller with Driver and PMBus Telemetry" [Online]. Available: http://datasheets.maximintegrated.com/en/ds/MAX15301AA02.pdf
[66] Texas Instruments.TPS65910x "Integrated Power-Management Unit Top Specification" [Online]. Available: http://www.ti.com/lit/ds/swcs046u/swcs046u.pdf
[67] 陳育煌, "採用堆疊開關功率級之數位降壓晶片設計," 國立成功大學電機工程學系碩士論文, 2016.
[68] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, "A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS," in 2010 Symposium on VLSI Circuits, 2010, pp. 241-242.
[69] P. Zumel, C. Fernandez, M. Sanz, A. Lazaro, and A. Barrado, "Step-By-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course," IEEE Transactions on Education, vol. 54, no. 4, pp. 599-609, 2011.
[70] Z. Kolka and J. Kova, "VHDL-AMS modeling of DC-DC converters for steady-state analysis," in 2008 15th International Conference on Mixed Design of Integrated Circuits and Systems, 2008, pp. 543-546.
[71] Q. Khan et al., "A 3.3V 500mA digital Buck-Boost converter with 92% peak efficiency using constant ON/OFF time delta-sigma fractional-N control," in 2011 Proceedings of the ESSCIRC (ESSCIRC), 2011, pp. 439-442.
校內:2022-08-31公開