| 研究生: |
鄧育昕 Teng, Yu-Hsin |
|---|---|
| 論文名稱: |
同步磁阻馬達之直接轉矩控制實現 Implementation of Direct Torque Control on Synchronous Reluctance Motor |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 共同指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 直接轉矩控制 、同步磁阻馬達 、多物理量耦合模擬 、有限元素分析 、磁交鏈觀測器 |
| 外文關鍵詞: | direct torque control, synchronous reluctance motor, multi-physics coupled-simulation, finite analysis method, flux observer |
| 相關次數: | 點閱:163 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出同步磁阻馬達之直接轉矩控制(Direct torque control,簡稱DTC)及Luenberger Observer估測架構,避免傳統磁交鏈估測以反電動勢積分的方式所造成的誤差累積及直流偏壓的現象。本研究採用Maxwell、Simplorer及MATLAB三種數值模擬軟體同時進行系統的多物理量耦合模擬,作為同步磁阻馬達直接轉矩控制架構的設計依據。透過MATLAB的模擬系統建置同步磁阻馬達直接轉矩控制所需的控制系統架構,決定馬達驅動系統的開關切換訊號,並藉由Simplorer軟體系統建置驅動電路,作為Maxwell與 MATLAB模擬間的橋樑,傳遞電流、電壓等電氣物理量至Maxwell中所建構的同步磁阻馬達模型,模擬馬達輸出的轉速、扭矩機械特性,及電磁場(包含磁交鏈、電感、反電動勢)電氣特性等,並將這些物理量回授至MATLAB軟體中,達到系統的多物理耦合模擬目的。最後,本論文以實驗結果驗證所提出的磁交鏈估測架構,其估測準確性高於傳統磁交鏈積分估測法,並同時證實耦合模擬分析結果的正確性。
In this paper, the direct torque control on synchronous reluctance motor and the flux Luenberger observer scheme are proposed to avoid the error accumulation and the stator voltage-drop caused by the back electromotive force integral in the traditional flux estimation. Three simulation software, i.e., Maxwell, Simplorer and MATLAB were used to implement the multi-physics coupled-simulation for designing the model of the synchronous reluctance motor direct torque control. MATLAB simulation was used to build the direct torque control model for determining the switching signal of the motor drive system, which was then delivered to the driver circuit built by Simplorer software. After which, Simplorer software exported the electric information such as current and voltage values to the synchronous reluctance motor model developed by Maxwell software for simulating the characteristics of the motor. Finally, the information collected was further delivered to MATLAB as the feedback signal to achieve the goal of multi-physics coupled-simulation. Our experimental results showed that the accuracy of the proposed method was higher than the traditional flux linkage estimation method. In addition, the co-simulation results of DTC collected had further confirmed that the capability/performance of the proposed method was better than the conventional method as well.
[1]W. Wang, M. Cheng, W. Hua, W. Zhao, S. Ding and Y. Zhu, “An improved stator flux observation strategy for direct torque controlled induction machine drive system,” Electrical Machines and Systems (ICEMS) 2010 International Conference on Incheon, pp.863-867, 2010.
[2]A. T. de Almeida, F. J. T. E. Ferreira, G. Baoming, "Beyond induction motors-technology trends to move up efficiency," IEEE transactions on industry applications, vol. 50, no. 3, May 2014.
[3]J. Malan, M. J. Kamper and P. N. T. Williams, “Reluctance synchronous machine drive for hybrid electric vehicle,”in IEEE Conf. Rec. ISIE’98, vol. 2, pp. 367-372, 1998.
[4]P. C. Krause, “Analysis of electric machinery”, McGraw-Hill Book Co., 1987.
[5]B. J. Chalmers, L. Musaba, and D. F. Gosden, “Variable-frequency synchronous motor drives for electric vehicles,” IEEE Trans. Ind. Appl., vol. 32, no. 4, pp. 896-903, July/Aug. 1996.
[6]F. Blaschke, “A new method for the structural decoupling of A.C. induction machines,” in Conf. Rec. IFAC on Düsseldorf and Germany, pp. 1–15, Oct. 1971.
[7]http://www.ti.com/general/docs/litabsmultiplefilelist.tsp?literatureNumber=sprabq2
[8]https://library.e.abb.com/public/14f3a3ad8f3362bac12578a70041e728/ABB Technical guide No 1 REVC.pdf
[9]I. Takahashi and T. Noguchi, “A new quick-response and High-Efficiency control strategy of an induction machine,” IEEE Trans. Ind. Appl., vol. IA22, pp. 820 827, Sep./Oct. 1986.
[10]D. Casadei, F. Profumo, G. Serra and A. Tani, “FOC and DTC: two viable schemes for induction motors torque control,” IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 779-787, Sep 2002.
[11]M. F. Rahman, L. Zhong, M. E. Haque and M. A. Rahman, “A direct torque-controlled interior permanent-magnet synchronous motor drive without a speed sensor,” in IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 17-22, Mar 2003.
[12]R. Wu and G. R. Slemon, “A permanent magnet motor drive without a shaft sensor,” IEEE Conference Record of the 1990 on Seattle, WA, USA, 1990, pp. 553-558 vol.1. , 1990.
[13]L. Ben-Brahim and A. Kawamura, “A fully digitized field-oriented controlled induction motor drive using only current sensors,” in IEEE Transactions on Industrial Electronics, vol. 39, no. 3, pp. 241-249, Jun 1992.
[14]M. H. Shin, D.S. Hyun, S. B. Cho and S. Y. Choe, “An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors,” Power Electronics Specialists Conference, 1998. PESC 98 Record. 29th Annual IEEE, Fukuoka, vol.2, pp. 1581-1586, 1998.
[15]M. N. Marwali and A. Keyhani, “A comparative study of rotor flux based MRAS and back EMF based MRAS speed estimators for speed sensorless vector control of induction machines,” IEEE Conference Record of the 1997 on New Orleans, LA, 1997, vol.1, pp. 160-166.
[16]E. Capecchi, P. Guglielmi, M. Pastorelli, and A. Vagati. “Position-sensorless control of the transverse-laminated synchronous reluctance motor”, IEEE Transactions On Industry Applications, Vol. 37, No. 6, November/December 2001
[17]J. K. Kostko, “Polyphase reaction synchronous motors,” Journal- AIEE, vol. 42, pp. 1162- 1168, 1923.
[18]T. Fukami, M. Momiyama, K. Shima, R. Hanaoka, S. Takata, “Performance of a dual-winding reluctance generator with a multiple-barrier rotor”, Department of Electrical and Electronic Engineering, Kanazawa Institute of Technology, Ishikawa 921-8501, Japan, June 30, 2006.
[19]曾冠閔, 「應用積層製造實現低噪之切換式磁阻馬達」, 國立成功大學機械工程學系碩士論文, 2016年7月。
[20]P. L. Alger, “The nature of polyphase induction machines”, New York: Wiley, 1951.
[21]T. A. Lipo, T. J. E. Miller, A. Vagati, I. Boldea, L. Malesani, and T. Fukao, “Synchronous reluctance drives” tutorial presented at IEEE-IAS Annual Meeting, Denver, CO, Oct. 1994.
[22]J. Haataja, “A comparative performance study of four-pole induction motors and synchronous reluctance motors in variable speed drives”, Lappeenranta University of Technology, ISBN 951-764-772-7, ISSN 1456-4491, Lappeenrannan teknillinen yliopisto, Digipaino 2003.
[23]C. Sadarangani, “Electrical machines: Design and analysis of induction and permanent magnet motors”, division of electrical machines and power electronics, school of electrical engineering, Royal institute of technology (KTH) Stockholm, Sweden, Feb., 2006.
[24]M. J. Kamper, F. S. Van der Merwe, S. Williamson, “Direct finite element design optimization of the cage less reluctance synchronous machine”, Energy Conversion, IEEE Transactions on, Vol. 11, pp,547 – 555, Sep. 1996.
[25]F. Fernandez-Bernal, A. Garcia-Cerrada, R. Faure, “Efficient control of reluctance synchronous machines”, Industrial Electronics Society, 1998. IECON '98. Proceedings of the 24th Annual Conference of the IEEE, Vol. 2, pp.923 -928,31 Aug. - 4 Sep., 1998.
[26]L. Xu, X. Xu, T.A. Lipo and D. W. Novotny, “Vector control of a synchronous reluctance motor including saturation and iron loss”, IEEE Trans. Industry Applications., vol. 27,no. 5, pp. 977-987, Sept. 1991.
[27]A. Vagati, “The synchronous reluctance solution: a new alternative in A. C. drives", Proc IEEE IECON'94 (Bolagna), vol. 1, pp.1-13, 1994.
[28]R. R. Moghaddam, “Synchronous reluctance machine (SynRM) design”, Master Thesis, Department of Electrical Engineering, Electrical Machines and Power electronics, Royal Institute of Technology, Stockholm, 2007.
[29]D. A. Staton, T. J. E. Miller, S. E. Wood, “Maximizing the saliency ratio of the synchronous reluctance motor”, Electric Power Applications Vol. 140, pp.249 – 259, Issue 4, Jul. 1993.
[30]T. Matsuo, T. A. Lipo, “Field oriented control of synchronous reluctance machine”, Power Electronics Specialists Conference, 1993. PESC '93 Record, 24th Annual IEEE, pp.425 – 431, 20-24 June.
[31]T. Matsuo, T. A. Lipo, ”Rotor design optimization of synchronous reluctance machine”,Energy Conversion, IEEE Transactions on, Vol. 9, pp.359 –365, Issue 2, June 1994.
[32]A. Vagati, M. Pastorelli, P. Guglielmi, A. Canova, “Synchronous reluctance motor based sensorless drive for general purpose application”, Dipartimento di Ingegneria Elettrica Industriale, Politecnico di Torino, Corso Duca degli Abruzzi, 24, I- 10129 Torino (Italy).
[33]A. Fratta, G. P. Troglia, A. Vagati, F. Villata, “ Evaluation of torque ripple in high performance synchronous reluctance machines”, IEEE-IAS Annual meeting, Toronto (Canada), Vol. I, pp. 163-170, Oct. 1993.
[34]D. G. Dorrell, T.J.E Miller, and C.B. Rassmussen, “Inter-bar currents in induction machines,” Industry applications conference on 2001 36th IAS annual meeting, Vol. 2, 2001, pp.729-736.
[35]M. Depenbrock, Brown, Boveri and C. Ag, U.S. Patent 06/788,816, 20 October, 1984.
[36]劉昌煥, 「交流電機控制」, 東華書局, 民國95年9月四版。
[37]E. Clarke, “Circuit analysis of AC power systems”, Vol. I- Symmetrical and Related Components, John Wiley and Sons, New York, 1943.
[38丁奕元, 「基於霍爾感測器之改良型轉子角度估算法應用於內藏式永磁同步馬達之驅動控制」, 國立台灣大學機械工程學系碩士論文, 2011年7月。
[39]K. R. Jardan, S. B. Dewan, and G. R. Slemon, “General analysis of three-phase inverters”, IEEE Trans. Ind. Gen. Appi., vol. IGA-5, pp. 672-679, Nov./Dec. 1969.
[40]K. R. Jardan, “Modes of operation of three-phase invertes”, IEEE Trans. Ind. Gen. Appl., vol. IGA-5, pp. 680-685, Nov./Dec. 1969.
[41]Y. Murai and Y. Tsunehiro, “Improved PWM method for induction motor drive inverters”, in Conf. Rec. 1983 IPEG, pp. 407-417.
[42]翁佑甯, 「同步磁阻馬達之設計與分析」,國立成功大學系統及船舶機電工程學系碩士論文, 2013年七月。
[43]D. V. Muñoz, “Design, simulation and implementation of a PMSM drive system”, Thesis for the Degree of Master of Science in Engineering, Division of Electric Power Engineering Department of Energy and Environment Chalmers University of Technology, 2011.
[44]R. Lagerquist, I. Boldea, and T. J. E. Miller, “Sensorless-control of the synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 673-682, May/June 1994.
[45]J. Hu, and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 969-977, Sep. 1998
[46]D. Yousfi, M. Azizi, and A. Saad, “Position and speed estimation with improved integrator for synchronous motor,” IEEE IECON ’99, pp. 1097-1102, Nov./Dec. 1999.
[47]http://en.wikipedia.org/wiki/Lyapunov_function
[48]凱登智動科技, “MR series說明書”, Gathertech intelligent automation CO., LTD, 2016.