| 研究生: |
莊賀琪 chuang, Ho-chi |
|---|---|
| 論文名稱: |
應用分散式訊號源編碼於錯誤恢復影像傳輸之研究 A Study of Error-Resilient Video Transmission by Using Distributed Source Coding |
| 指導教授: |
郭致宏
Kuo, Chih-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 分散式編碼 、H.264 、錯誤恢復 、低密度奇偶校驗碼 |
| 外文關鍵詞: | H.264, Distributed source coding, Error resilience, Low-density parity-check code |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出一個採用分散式訊號源編碼(DSC)的概念來增進影像傳輸可靠性的架構。在這個架構中串聯兩種前向錯誤更正(FEC)編碼器,一個是為了做資料壓縮,將二進制訊號源編碼成Syndrome。另一個是為了做錯誤更正,將Syndrome編碼成Parity。實驗結果顯示在高編碼率時,此架構的錯誤更正能力優於單一前向錯誤更正編碼器。我們應用此架構於H.264/AVC影像傳輸並且和系統式失真錯誤保護(SLEP)比較結果。在模擬無線傳輸的狀況下,當BER為10-4、傳輸通道為二進制對稱通道(BSC)時,我們的PSNR能優於系統式失真錯誤保護14.624 dB。
This thesis presents a scheme by adopting the concept of distributed source coding (DSC) to improve the reliability of video transmission. This scheme concatenates two kinds of forward error corrections (FEC) encoders. One encodes the binary source into the syndrome for data compression. The other encodes the syndrome into the parity for error protection. The simulation results show that the correction capacity of our scheme is better than the single FEC encoder in the high code rate. We employ this scheme for H.264/AVC video transmission and compare results with systematic lossy error protection (SLEP). In the wireless scenario, the PSNR of our scheme is 14.624 dB higher than SLEP at 10-4 bit error rate on the binary symmetric channel (BSC).
[1] D.J. Le Gall, “The MPEG video compression algorithm,” Signal Processing: Image Communication, vol. 4, pp. 129-140, 1992.
[2] ISO/IEC JTC1/SC29/WG11, “MPEG-4 video verification model version 18.0,” N3908, Jan. 2001.
[3] T. Wiegand, G. Sullivan, and Ajay Luthra, “Draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T Rec. H.264 |ISO/IEC 14496-10 AVC),” Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT G050r1, Geneva, Switzerland, May 2003.
[4] I.S Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM Journal of Applied Mathematics, vol. 8, pp. 300-304, 1960
[5] R.Gallager, “Low-density parity-check codes,” IRE Trans. Information Theory, pp. 21-28, Jan. 1962.
[6] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun., vol. 44, pp. 1261-1271, Oct. 1996.
[7] D. Slepian and J.K Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inform. Theory, vol.19, pp. 471-480, July 1973.
[8] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inform. Theory, vol. 22, no. 1, pp. 1-10, 1976.
[9] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary sources with side information at the decoder using low-density parity-check codes,” IEEE Commun. Lett., vol. 6, no. 10, pp. 440-442, Oct. 2002.
[10] T.J Richardson, M.A. Shokrollahi, and R.L. Urbanke, “Design of capacity- approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001
[11] R.L. Urbanke, “LdpcOpt: a fast and accurate degree distribution optimizer for LDPC code ensembles,” Available: http://lthcwww.epfl.ch/research/ldpcopt/.
[12] S. Rane and B. Girod, “Systematic lossy error protection based on H.264/AVC redundant slices,” in Proc. SPIE Visual Communications and Image Processing, VCIP-2006, San Jose, CA. Jan. 2006.
[13] Radford M. Neal, “Software for low density parity check (LDPC) codes,” Available: http://www.cs.toronto.edu/%7Eradford/ldpc.software.html
[14] Chalmers University of Technology, “Welcome to IT++,” Available: http://itpp.sourceforge.net/
[15] W.E. Ryan, “An introduction to LDPC code,” Department of Electrical and Computer Engineering, Aug. 2003
[16] IEEE 802.11n/D1.0, Wireless LAN medium access control and physical layer specifications: enhancements for higher throughput, Mar. 2006
[17] IEEE 802.16e/D12, Air interface for fixed and mobile broadband wireless access systems, Oct. 2005.
[18] IEEE 802.20, (or Mobile Broadband Wireless Access (MBWA) Working Group)
[19] IEEE 802.3an, Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications, 2006
[20] European telecommunications standards institute (ETSI). Digital video broadcasting (DVB) second generation framing structure for broadband satellite applications; EN 302 307 V1.1.1. Available: http://www.dvb.org
[21] S. Kumar, L. Xu, M.K. Mandal, and S. Panchanathan, “Error resiliency schemes in H.264/AVC video coding standard,” Journal of Visual Communication and Image Representation, vol.17, no. 2, pp.425-450, 2006
[22] Y. Wang, M.M. Hannuksela, V. Varsa, A. Hourunranta, and M. Gabbouj, “The error concealment feature in the H.26L test model,” in Proc. Int Conf. Image Processing, vol. 2, Sep. 2002, pp. 729-73
[23] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate code,” in Proc. 2nd. Int. Symp. On Turbo Codes and Related Topics, Brest, France, pp. 1-8, Sep. 2000.
[24] R.M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Information Theory, pp. 533-547, Sep. 1981.
[25] S.Y. Chung, T.J. Richardson, and R.L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inform. Theory, vol. 47, pp. 657-670, Feb. 2001.
[26] S. Rane, P. Baccichet, and B. Girod, “Systematic lossy error protection based on H.264/AVC redundant slices and flexible macroblock ordering,” Joint Video Team of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)19th meeting, Geneva, Switzerland, March 31-Apr 7, 2006, Document Name JVT-S025.doc
[27] K. Suhring, “H.264/AVC software coordination,” Available:
http://iphome.hhi.de/suehring/tml/
[28] S. Rane, A. Aaron, and B. Girod, “Systematic lossy forward error protection for error resilient digital video broadcasting,” in Proc. SPIE Visual Communications and Image Processing, VCIP-2004, San Jose, CA, Jan. 2004
[29] M. Ramon, F.X. Coudoux, and M.G. Gazalet, “Efficient priority encoding transmission scheme based Wyner-Ziv coding and spatial scalability,” in Proc. of SPIE, vol. 5960, pp. 1903-1910, July. 2005
[30] S. Rane, A. Aaron, and B. Girod, “Error-resilient video transmission using multiple embedded Wyner-Ziv descriptions,” in Proc. IEEE Internation Conference on Image Processing, ICIP-2005, Genoa, Italy, Sep. 2005
[31] P. Baccichet, S. Rane, and B. Girod, “Systematic lossy error protection based on H.264/AVC redundant slices and flexible macroblock ordering,” in Proc. Packet Video Workshop, PV-2006, Hangzhou, China, April 2006
[32] S.B. Wicker and V.K. Bhargava, “Reed Solomon codes and their application,” Chapter 5, 1994 IEEE Press.
[33] Saurav Bandyopadhyay, Zhenyu Wuj, Purvin Pandit, and Jill Boyce, “Frame loss error concealment for H.264/AVC,” Joint Video Team of ISO/IEC MPEG & ITU-T VCEG.JVT-P072, July 2005.
[34] S.Y. Chung, G..D. Forney, T.J. Richardson, and R.L. Urbanke, “On the design of low-density parity-check codes within 0.0045dB of the Shannon limit,” IEEE Comm. Letters, vol. 5, pp. 58-60, Feb. 2001.
[35] P. Baccichet, D. Bagni, A. Chimienti, L.Pezzoni, F.S. Rovati, “Frame concealment for H.264/AVC decoders,” IEEE Transactions on Consumer Electronics, vol. 51, no. 1, pp. 227, Feb. 2005
[36] P. Baccichet, D. Bagni, A. Chimienti, L. Pezzoni, F.S. Rovati, “Frame concealment for H.264/AVC decoders,” International Conference on Consumer Electronics, pp. 329 –330, Jan. 2005.
[37] Y. Zhao, M.M. Hannukasela, D. Tian, M. Gabbouj, “Spatial error concealment based on directional decision and intra prediction,” IEEE International Symposium on ISCAS 2005, vol. 3, pp. 2899 – 2902, May 2005.
[38] Jinghong Zheng, Lap-Pui Chau, “Efficient motion vector recovery algorithm for H.264 based on a polynomial model,” IEEE Transactions on Multimedia, vol. 7, no. 3, pp. 507, June 2005.