| 研究生: |
黃俊欽 Huang, Jun-Chin |
|---|---|
| 論文名稱: |
改善砷化銦鋁/砷化銦鎵異質結構高電子移動率電晶體扭結效應之研究 Investigations on Relieving Kink Effects of InAlAs/InGaAs High Electron Mobility Transistors |
| 指導教授: |
許渭州
Hsu, Wei Chou 李景松 Lee, Ching-Sung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 高電子移動率電晶體 、扭結效應 |
| 外文關鍵詞: | kink effect, HEMT |
| 相關次數: | 點閱:68 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們成功的研製一系列改善砷化銦鋁/砷化銦鎵異質結構高電子移動場效電晶體扭結效應的方法。藉由不同銦含量的通道及製程的改變,完整的探討其對元件特性的影響。
首先我們插入磷化銦的蝕刻阻擋層在砷化銦鋁蕭特基層之上來改善砷化銦鋁上的表面陷阱及減緩扭結效應。因為增加載子傳輸能力及增加產生衝擊游離化的臨界電場值在順向漸變式通道,有順向漸變式通道的電晶體展示更高的異質轉導質為342 mS/mm、電流驅動能力為360mA/mm、尖峰的閘極漏電流 為2.0 uA/mm、輸出轉導值為3.9 mS/mm、電壓增益值為94.2、輸出功率為12.43 dBm及良好的溫度穩定特性。
然後,我們研製通道銦組成為0.425之δ-摻雜的砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體。相較於銦組成為0.53的砷化銦鎵通道,銦組成為0.425的砷化銦鎵通道具有較大的能隙,因此可以降低通道中衝擊游離的現象,減緩扭結效應,同時可獲得較大的閘-源極兩端的崩潰電壓為 -19.2 V、較低的輸出電導為0.73 mS/mm、較佳的電壓增益為402。在操作頻率為5.8 GHz時,可獲得小訊號功率增益為21.05 dB,飽和輸出功率為18.28 dBm (336 mW/mm),最大功率附加效率為41.4 %。另外此研究的元件也展示良好的特性當溫度升到500 K時。
為了使元件更能適用於高頻率的應用上,我們進一步研製銦組成為更高之漸變式通道的δ-摻雜砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體。由於高銦組成的砷化銦鎵通道具有較窄的能隙,所以載子有較佳的傳輸特性,進而改善元件的轉導值及高頻特性。我們研製利用氮化矽表面鈍化層及雙重閘極凹進的方式來改善元件的扭結效應。氮化矽鈍化層主要影響是有效地減少表面再結合中心並壓制電子誘捕在表面狀態之內,元件特性表現出減緩扭結效應和閘極漏電流。因此,利用氮化矽表面鈍化層及雙重閘極凹進的技術使元件特性達到異質轉導為441 mS/mm、輸出電導為 6.3 mS/mm、電壓增益為69、單位電流增益截止頻率為61GHz、最大振盪頻率為108GHz、輸出功率為 18.91 dBm、元件三階線性點為28.1 dBm。
除了藉由氮化矽表面鈍化層及雙重閘極凹進的方式之外,我們也藉經由臭氧水處理直接氧化砷化銦鋁來改善扭結效應。此閘極氧化製程提供一個低成本方法來形成大約8 nm氧化層並且有良好的表面平坦度在金氧半電晶體閘極結構。在經臭氧處理及未處理相比較下,經由臭氧處理的呈現出減少閘極漏電流為12.9 μA/mm、改善閘極電壓擺幅為0.9 V、輸出電導為4.5 mS/mm、電壓增益為80.5、崩潰電壓為-14.9 V、輸出電壓為18.34 dBm、元件三階線性點為 26.1 dBm。
In this dissertation, we have successfully fabricated and investigated InAlAs/InGaAs high electron mobility transistors (HEMT’s) by employing different InxGa1-xAs channel designs and fabrication processes to improve the breakdown voltage and power characteristics.
First, an InP etch stop layer was inserted on top of the InAlAs Schottky layer to improve the surface traps on the InAlAs layer and to alleviate the kink effects. Because increasing the carrier transport property and the threshold field for impact ionization in a linearly-graded channel structure, the LGC-HEMT has demonstrated high device gain of 342 mS/mm, high current drive capability of 360 mA/mm, low gate leakages of -2.0 μA/mm at VDS = 2V, low output conductance of 3.9 mS/mm, high voltage gain of 94.2, high output power of 12.43 dBm, and good thermal stability, as compared to those of the LMC-HEMT and ILGC-HEMT, respectively.
Then, we’ve investigated the double -doped In0.425Al0.575As/In0.425Ga0.575As MHEMT’s. Since the energy band-gap of In0.425Ga0.575As channel is wider than that of the In0.53Ga0.47As channel in lattice-matched InP HEMT devices, the impact ionization phenomenon within the channel is expected to be reduced, thus relieving the kink effects. Consequently, the proposed double -doped MHEMT has shown low output conductance of 0.73 mS/mm, improved gate-drain breakdown voltage of -19.2 V, voltage gain of 402 and saturated output power of 18.28 dBm. Besides, the proposed MHEMT has also demonstrated superior high-temperature performance up to 500 K with positive thermal threshold coefficient (Vth/T) of 0.39 mV/K.
To facilitate the high-frequency applications, we have further investigated a -doped In0.45Al0.55As/InxGa1-xAs MHEMT by using a linearly-graded InxGa1-xAs (0.63→0.53) channel. Due to the high indium composition of the InxGa1-xAs channel, better carrier transport characteristics have been obtained to improve the transconductance and high-frequency characteristics. We have used the SiNx surface passivation and double-recess techniques to relieve the above-mentioned kink effects. Therefore, the propose MHEMT device has improved the extrinsic transconductance (gm) from 419 to 445 mS/mm, breakdown voltage from -7.7 to -13.1 V, output conductance (gd) from 17.7 to 6.3 mS/mm, voltage gain (AV) from 29 to 69, cut-off frequency (ft) from 55 to 61 GHz and maximum oscillation frequency (fmax) from 92 to 108GHz, the output power (Pout) from 14.33 to 18.91 dBm and the third-order intercept point (OIP3) from 19.3 to 28.2 dBm at 300 K, respectively. In addition, the device with double gate-recess has also demonstrated improved thermal stability with the deviations of gm,max and ID,max from 300 K to 500 K are only 18.8 % and 12.6 %, respectively.
In addition to using the SiNx surface passivation and double-recess techniques, we’ve further investigated to relieving kink effects by using the ozone water oxidation treatment. The gate oxidation process provides a cost-effective method to deposit an about 8-nm thick oxide film with superior surface flatness in the gate structure of the MOS-MHEMT. In comparison, the proposed MHEMT with the ozone treatment has demonstrated improved peak gate leakage density from 59.5 μA/mm to7.1 μA/mm, breakdown voltage (BVGD) from -5.8 V to -14.9 V, output conductance (gd) from 33.1 to 4.5 mS/mm, voltage gain (Av) from 11.7 to 80.5, gate-voltage swing (GVS) from 0.45 to 0.9 V, output power (Pout) from 13.43 to 18.34 dBm and OIP3 from 15.8 to 26.1 dBm at 300 K, respectively.
[1] G.. M. Metze, J. F. Bass, T. T. Lee, A. B. Cornfeld, J. L. Singer, H.L. Hung, H. C. Huang, and K. P. Pande, “High-gain, V-band, low-noise MMIC amplifiers using pseudomorphic MODFETs,” IEEE Electron Device Lett., vol.11, p. 24, 1990.
[2] C. S. Wu, C. K. Pao, W. Yau, H. Kanber, M. Hu, S. X. Bar, A. Kurdoghlian, A. Bardai, D. Bosch, C. Seashore, and M. Gawronski, “Pseudomorphic HEMT manufacturing technology for multifunctional Ka-band MMIC applications,” IEEE Microwave Theory and Tech., vol.43, p. 257, 1995.
[3] S. E. Rosenbaum, B. K. Kornanyos, L. M. Jellian, M. Matloubian, A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompson, L. P. B. Katehi, and G. M. Rebeiz, “155- and 213-GHz AlInAs/GaInAs/InP HEMT MMIC oscillators,” IEEE Microwave Theory and Tech., vol. 43, p. 927, 1995.
[4] T. Yokoyama, T. Kunihisa, M. Nishijima, S. Yamamoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa, “Low current dissipation pseudomorphic MODFET MMIC power amplifier for PHS operating with a 3.5 V single voltage supply,” in IEEE GaAs IC Symp., p. 107, 1996.
[5] T. Tanaka, H. Furukawa, H. Takenaka, T. Ueda, T. Fukui, and D. Ueda, “Low-voltage operation GaAs spike-gate power FET with high power-added efficiency,” IEEE Trans. Electron Devices, vol. 44, p. 354, 1997.
[6] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microwave Theory and Tech., vol. 48, p. 1313, 2000.
[7] D. R. Greenberg, J. A. D. Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal application,” IEEE Electron Device Lett., vol. 12, p. 436, 1991.
[8] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFET,s grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, p. 456, 1994.
[9] C. Z. Wu, L. W. Laih, and W. C. Liu, “Study of InGaAs/GaAs metal-insulator-semiconductor-like heterostructure field-effect transistor,” Solid-State Electron., vol. 39, p. 791, 1996.
[10] W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen, and W. C. Wang, “application of selective removal of mesa sidewalls for high-breakdown and high-linearity Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Appl. Phys. Lett., vol. 74, p. 2155, 1999.
[11] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lim, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite channel (CDC) heterostructure field-effect transistor,” IEEE Trans. Electron Devices, vol. 48, p. 2677, 2001.
[12] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a New InGaP–InGaAs Pseudomorphic Double Doped-Channel Heterostructure Field-Effect Transistor (PDDCHFET)” IEEE Trans. Electron Devices, vol. 50, p.1717, 2003.
[13] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the Improvement of Gate Voltage Swings in δ-Doped GaAs/InxGa1-xAs/GaAs Pseudomorphic Heterostructures,” IEEE Trans. Electron Devices, vol. 40, p. 1630, 1993.
[14] Y. J. Lee, W. C. Hsu, and S. Y. Wang, “Temperature-dependent characteristics of Al0.2Ga0.8As/In0.22Ga0.78As pseudomorphic double heterojunction modulation doped filed-effect transistor with a GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21, p. 760, 2003.
[15] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage and high-temperature operations,” IEEE Trans. Electron. Devices, vol. 48, p. 1522, 2001.
[16] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei,, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, p. L1385, 1999.
[17] D. H. Jeong, K. S. Jang, J. S. Lee, Y. H. Jeong, and B. Kim, “DC and AC characteristics of Al0.25Ga0.75As/GaAs quantum-well delta-doped channel FET grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 13, p. 270, 1992.
[18] H. Hida, A. Okamoto, H. Toyoshima, and K. Ohata, “An investigation of i-AlGaAs/n-GaAs doped-channel MIS-like FETs (DMT’s)-properties and performance potentialities,” IEEE Trans. Electron Devices, vol. 34, p. 1448, 1987.
[19] P. P. Ruden, M. Shur, A. I. Akinwande, D. E. Grider, and J. Beak, “AlGaAs/InGaAs/GaAs quantum well doped channel heterostructure filed effect transistors,” IEEE Trans. Electron Devices, vol. 37, p. 2171, 1990.
[20] Y. J. Chan, and M. T. Yang, “Al0.3Ga0.7As/InxGa1-xAs(0≤x<0.25) doped-channel field-effect transistors (DCFET’s),” IEEE Trans. Electron Devices, vol. 42, p. 1745, 1995.
[21] P. C. Chao, A. Tessmer, K. H. G.. Duh, M. Y. Kao, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-Band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., vol. 11, p. 59, 1990.
[22] P. Ho, M. Y. Kao, P. C. Chao, K. H. G. Duh, J. M. Ballingal, S. T. Allen, A. J. Tessmer, and P. M. Smith, “Extremely high gain 0.15um gate-length InAlAs/InGaAs HEMT’s,” Electron Lett., vol. 27, p. 325, 1991.
[23] K. B. Chough, T. Y. Chang, M. D. Feuer, N. J. Sauer, and B. Lalevic, “High-performance highly strained Ga0.23In0.77As/Al0.48In0.52As MODFET’s obtained by selective and shallow etch guide recess techniques,” IEEE Electron Device Lett., vol. 13, p. 451, 1992.
[24] L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 39, p. 2007, 1992.
[25] P. M. Smith, S. –M. J. Liu, M. –Y. Kao, P. Ho, S. C. Wang, K. H. G. Duh, S. T. Fu, and P. C. Chao, “W-band high efficiency InP-based power HEMT with 600 GHz fmax,” IEEE Microwave and Guided Wave Lett., vol. 5, p. 230, 1995.
[26] Y K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High-performance InP-based enhancement-mode HEMTs using nonalloyed ohmic contacts and Pt-buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, p. 252, 1996.
[27] A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “0.3 μm gate length enhancement-mode AlInAs/InGaAs/InP high electron mobility transistor,” IEEE Electron Device Lett., vol. 18, p. 284, 1997.
[28] Y. C. Chen, D. L. Ingram, R. Lai, M. Barsky, R. Grunbacher, T. Block, H. C. Yen, and D. C. Streit,” A 95-GHz InP HEMT MMIC amplifier with 427-mW power output,” IEEE Microwave and Guided Wave Lett., vol. 8, p. 399, 1998.
[29] C. Nguyen, and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers,” IEEE Trans. Electron. Devices, vol. 48, p. 472, 2001.
[30] P. C. Chao, A. Tessmer, K. H. G. Duh, M. Y. Kao, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., vol. 11, p. 59, 1990.
[31] Y. C. Chen, D. L. Ingram, R. Lai, M. Barsky, R. Grunbacher, T. Block, H. C. Yen, and D. C. Streit, “A 95-GHz InP HEMT MMIC amplifier with 427-mW power output,” IEEE Microwave Guide. Wave Lett., vol. 8, p. 399, 1998.
[32] D. M. Gill, P. N. Uppal, and S. P. Svensson, “Selective wet etching of lattice-matched InGaAs/InAlAs on InP and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B, vol. 14, p. 3400, 1996.
[33] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, ”30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans. Electron. Devices, vol. 49, p. 1694, 2002.
[34] G. Meneghesso, D. Buttari, E. Perin, C. Canali, and E. Zanoni, “Improvement of DC, low frequency and reliability properties of InAlAs/InGaAs InP-Based HEMTs by means of an InP etch stop layer,” IEDM Tech. Dig., p.227, 1998.
[35] G. Menehesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Lur, J. J. Brown, C. Canali, and E. Zanoni, “ On-state and off-state breakdown in GaInAs/InP composite-channel HEMT’s with variable GaInAs thickness,” IEEE Trans. Electron Devices, vol. 46,p.2 , Jan. 1999.
[36] D. H. Kim, S. J. Yeon, J. H. Lee, and K. S. Seo, “ Performance enhancement of 0.13 um InGaAs pHEMT by reduction of parasitic effect using Novel double deck shaped (DDS) gate structure,” IEDM Tech. Dig., p.733,2003
[37] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, and Y. J. Chen, “Characteristics of In0.52Al0.48As/InxGa1-xAs HEMT’s with various InxGa1-xAs channels,” Solid-State Electronic., vol. 48, pp. 119-124, Jan 2004.
[38] Y. J. Chen, W.C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu,” InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations,” Solid-State Electronic., vol. 49, p.163,. 2005.
[39] A. Mahajan, M. Arafa, P. Fay, C. Caneau, I Adesida, “0.3 Gate length InAlAs/InGaAs/InP High Electron Mobility Transistor,” IEEE Electron Devices Lett., vol. 18, p. 284,.1997.
[40] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT’s with variable GaInAs channel thickness,” IEEE Trans. Electron. Devices, vol. 46, p. 2, 1999.
[41] M. H. Somerville, R. Blanchard, J. A. Del Alamo, G. Duh, and P. C. Chao, “On-state breakdown in power HEMT’s: measurements and modeling,” in IEDM Tech. Dig., p. 553, 1997.
[42] G. Meneghesso, A. Mion, A. Neviani, M. Matloubian, J. Brown, M. Hafizi, T. Liu, C. Canali, M. Pavesi, M. Manfredi, and E. Zanoni, “Effects of channel quantization and temperature on off-state and on-state breakdown in composite channel and conventional InP-based HEMT’s,” in IEDM Tech. Dig., p. 43, 1996.
[43] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, p. 1129, 1992.
[44] K. L. Kavanagh, J. C. P. Chang, J. Chen, J. M. Fernandez, and H. H. Wieder, “Lattice tilt and dislocations in compositionally step-graded buffer layers for mismatched InGaAs/GaAs heterointerfaces,” J. Vac. Sci. Technol. B, vol. 10, p. 1820, 1992.
[45] A. Bosacchi, A. C. De Riccardis, P. Frigeri, S. Franchi, C. Ferrari, S. Gennari, L. Lazzarini, L. Nasi, G. Salviati, A. V. Drigo, and F. Romanato, “Continuously graded buffers for InGaAs/GaAs structures grown on GaAs,” J. Cryst. Growth, vol. 175/176, p. 1009, 1997.
[46] P. Win, Y. Druelle, P. Legry, S. Lepilliet, A. Cappy, Y. Cordier, and J. Favre, “Microwave performance 0.4 µm gate metamorphic In0.29Al0.71As/ In0.3Ga0.7As HEMT on GaAs Substrate,” Electron. Lett., vol. 29, p. 169, 1993.
[47] P. Win, Y. Druelle, Y. Cordier, D. Adam, J. Favre, and A. Cappy, “High-performance In0.3Ga0.7As/In0.29Al0.71As/GaAs metamorphic high-electron- mobility transistors,” Jpn. J. Appl. Phys., vol.33, p. 3343, 1994.
[48] J. I. Chyi, J. L. Shieh, J. W. Pan, and R. M. Lin, “Material properties of compositional graded InxGa1-xAs and InxAl1-xAs epilayers grown on GaAs substrates,” J. Appl. Phys., vol. 79, p. 8367, 1996.
[49] Y. Cordier, and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth, vol. 201/202, p. 263, 1999.
[50] S. I. Gozu, K. Tsuboki, M. Hayashi, C. Hong, and S. Yamada, “Very high electron mobilities at low temperatures in InxGa1-xAs/InyAl1-yAs HEMTs grown lattice-mismatched on a GaAs substrates,” J. Cryst. Growth, vol. 201/202, p. 749, 1999.
[51] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/ InGaAs metamorphic low-noise HEMT,” IEEE Microwave Guide. Wave Lett., vol. 7, p. 6, 1997.
[52] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Böhm, G. Tränkle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT’s on GaAs substrates with a novel composite channel design,” IEEE Electron Device Lett., vol. 17, p. 273, 1996.
[53] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMT’s on GaAs substrate,” IEEE Electron Device Lett., vol. 20, p. 123, 1999.
[54] Y. Cordier, S. Bollaert, M. Zaknoune, J. diPersio, and D. Ferre, “AlInAs/GaInAs metamorphic HEMT’s on GaAs substrate: from material to device,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 211, 1998.
[55] S. Bollaert, Y. Corider, M. Zaknoune, T. Parenty, H. Happy, S. Lepilliet, and A. Cappy, “fmax of 490 GHz metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate,” IEEE Electron. Lett., vol. 38, p. 389, 2002.
[56] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Corider, Y. Druelle, D. Théron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, p. 345, 1999.
[57] A. S. Wakita, H. Rohdin, V. M. Robbins, N. Moll, C. Y. Su, A. Nagy, and D. P. Basile, “Low-noise bias reliability of AlInAs/GaInAs MODFETs with linearly graded low-temperature buffer layers grown on GaAs substrates,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 223, 1998.
[58] Y. Cordier, M. Zaknoune, S. Bollaert, and A. Cappy, “Charge control and electron transport properties in InyAl1-yAs/InxGa2-xAs metamorphic HEMTs: effect of indium content,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 102, 2000.
[59] D. C. Dumka, H. Q. Tserng, M. Y. Kao, E. A. Beam, and P. Saunier, “High-performance double-recess enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE Electron Device Lett., vol. 24, p. 135, 2003.
[60] D. M. Gill, B. C. Kane, Stefan P. Svensson, D. W. Tu, P. N. Uppal, and N. E. Byer, “High-performance, 0.1 µm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, p. 328, 1996.
[61] D. W. Tu, S. Wang. J. S. M. Liu, K. C. Hwang, W. Kong, P. C. Chao, and K. Nichols, “High-performance double-recess InAlAs/InGaAs power metamorphic HEMT on GaAs substrate,” IEEE Microwave Guide. Wave Lett., vol. 9, p. 458, 1999.
[62] M. Behet, K. Eanden, G. Borghs, and A. Behres, “Metamorphic InGaAs/InAlAs quantum well structures grown on a GaAs substrates for high electron mobility transistor applications,” Appl. Phys. Lett., vol. 73, p. 2760, 1998.
[63] K. C. Hwang, P. C. Chao, C. Creamer, K. B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, and G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT’s,” IEEE Electron Device Lett., vol. 20, p. 551, 1999.
[64] D. M. Gill, P. N. Uppal, and S. P. Svensson, “Selective wet etching of lattice-matched InGaAs/InAlAs on InP and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B, vol. 14, p. 3400, 1996.
[65] W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1-xAs /InxGa1-xAs high electron mobility transistor material and devices with x = 0.3-0.4,” J. Vac. Sci. Technol. B, vol. 18, p. 1638, 2000.
[66] W. E. Hoke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F. Marsh, R. A. Mctaggart, S. M. Lardizabal, and K. Hetzler, “Molecular beam epitaxial growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrate,” J. Vac. Sci. Technol. B, vol. 17, p. 1131, 1999.
[67] C. S. Whelan, W. E. Hoke, R. A. Mctaggart, S. M. Lardizabal, P. S. Lyman, P. F. Marsh, and T. E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE Electron Device Lett., vol. 21, p. 5, 2000.
[68] C. S. Whelan, P. F. Marsh, W. E. Woke, R. A. McTaggart, P. S. Lyman, P. J. Lemonias, S. M. Lardizabal, R.E. Leoni III, S. J. Lichwala, and T. E. Kazior, “Millimeter-wave low-noise and high-power metamorphic HEMT amplifier and devices on GaAs substrate,” IEEE J. Solid-State Circuits, vol. 35, p. 1307, 2000.
[69] N. Rorsman, C. Karlsson, S. M. Wang, H. Zirath, and T. G. Andersson, “DC and RF performance of 0.15 µm gate length In0.70Al0.30As/In0.80Ga0.20As HFETs on GaAs substrate,” Electron. Lett., vol. 31, p. 1114, 1995.
[70] N. Rorsman, C. Karlsson, S. M. Wang, H. Zirath, and T. G. Andersson, “DC and RF performance of 0.15 µm gate length In0.70Al0.30As/In0.80Ga0.20As HFETs on GaAs substrate,” Electron. Lett., vol. 31, p. 1114, 1995.
[71] L. M. Jelloain, M. Matloubian, T. Liu, and M. A. Thompson, “InP-based HEMT’s with Al0.48In0.52AsxP1-x schottky layer,” IEEE Electron Device Lett., vol. 15, p. 172, 1994.
[72] S. R. Bahl, and J. A. Del Alamo, “Physics of breakdown in InAlAs/n+-InGaAs heterostructure field effect transistors,” IEEE Trans. Electron Devices, vol. 41, p. 2268, 1994.
[73] J. Dichmann, S. Schildberg, K. Riepe, B. E. Maile, A. Schurr, A. Geyer, and P. Narozny, “Breakdown mechanisms in pseudomorphic InAlAs/InxGa1-xAs high electron mobility transistors on InP. I: Off-state,” Jpn, J. Appl. Phys., vol. 34, p. 66, 1995.
[74] J. Dichmann, S. Schildberg, K. Riepe, B. E. Maile, A. Schurr, A. Geyer, and P. Narozny, “Breakdown mechanisms in pseudomorphic InAlAs/InxGa1-xAs high electron mobility transistors on InP. II: On-state,” Jpn, J. Appl. Phys., vol. 34, p. 1805, 1995.
[75] M. H. Somerville, R. Blanchard, J. A. Del Alamo, G. Duh, and P. C. Chao, “On-state breakdown in power HEMT’s: measurements and modeling,” in IEDM Tech. Dig., p. 553, 1997.
[76] G. Meneghesso, A. Mion, A. Neviani, M. Matloubian, J. Brown, M. Hafizi, T. Liu, C. Canali, M. Pavesi, M. Manfredi, and E. Zanoni, “Effects of channel quantization and temperature on off-state and on-state breakdown in composite channel and conventional InP-based HEMT’s,” in IEDM Tech. Dig., p. 43, 1996.
[77] H. Rohdin, C. Y. Su, N. Moll, A. Wakita, A. Nagy, V. Robbins, and M. Kauffman, “Semi-analytical analysis for optimization of 0.1 µm InGaAs-channel MODFET’s with emphasis on on-state breakdown and reliability,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 357, 1997.
[78] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT’s with variable GaInAs channel thickness,” IEEE Trans. Electron. Devices, vol. 46, p. 2, 1999.
[79] M. H. Somerville, J. A. Del Alamo, and W. Hoke, “A new physical model for the kink effect on InAlAs/InGaAs HEMT’s,” in IEDM Tech. Dig., p. 201, 1995.
[80] T. Suemitsu, T. Enoki, M. Tomizawa, N. Shigekawa, and Y. Ishii, “Mechanisms and structural dependence of kink phenomena in InAlAs/InGaAs HEMT’s,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 365, 1997.
[81] T. Suemitsu, H. Fushimi, S. Kodama, S. Tsunashima, and S. Kimura, “Influence of Hole Accumulation on the source resistance, kink effect and on-state breakdown of InP-based HEMTs: light irradiation study,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 456. 2001.
[82] M. H. Somerville, A. Ernst, and J. A. Del Alamo, “A physical model for kink effect in InAlAs/InGaAs HEMT’s,” IEEE Trans. Electron. Devices, vol. 47, p. 922, 2000
[83] R. T. Webster, S. Wu, and F. M. Anwar, “Impact ionization in InAlAs/InGaAs/InAlAs HEMT’s,” IEEE Electron Device Lett., vol. 21, p. 193, 2000.
[84] C. R. Bolognesi, M. W. Dvorak, and D. H. Chow, “Impact ionization suppression by quantum confinement: effects on the DC and microwave performance of narrow-gap channel InAs/AlSb HFET’s,” IEEE Trans. Electron. Devices, vol. 46, p. 826, 1999.
[85]
A. Mazzanti, G. Verzellesi, G. Sozzi, R. Menozzi, C. Lanzieri, and C. Canali, “Physical investigation of trap-related effects in power HFETs and their reliability implications,” IEEE Trans. Device and Materials Reliability, vol. 2, p. 65, 2002.
[86] M. Boudrissa, E. Delos, C. Gaquiere, M. Rousseau, Y. Cordier, D. Theron, and J. C. D. Jaeger, “Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT: modeling and measurements,” IEEE Trans. Electron. Devices, vol. 48, p. 1037, 2001.
[87] M. Zaknounce, B. Bonte, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron, and Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67 As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,” in Proc. 56th Device Research Conf, p. 34, 1998.
[88] Y. Cordier, J.-M. Chauveau, D. Ferre and J. Dipersio, “Comparison of In0.33Al0.67As/In0.34Ga0.66As on GaAs metamorphic high electron mobility transistors grown by molecular beam epitaxy with normal and inverse step on linear graded buffer layers” J. Vac. Sci. Technol. B, vol. 18, p. 2513, 2000.
[89] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As/ InxGa1-xAs Metamorphic HEMTs With Pseudomorphic and Symmetrically graded Channels”, IEEE Trans. Electron Devices, vol. 52, no. 6, p. 1079, 2005.
[90] J. Y. Shim, H. S. Yoon, D. M. Kang, J. Y. Hong and K. H. Lee, “Extremely Low Noise Characteristics of 0.15µm Power Metamorphic-High-Electron Mobility Transistors” Jpn, J. Appl. Phys., vol.45, p. 3380 ,2006
[91] Y. J. Chen, C. S. Lee, T. B. Wang , W. C. Hsu, Y. W. Chen, K. H. Su and C. L. Wu, “Improved In0.45Al0.55As/In0.45Ga0.55As/In0.65Ga0.35As Inverse Composite Channel Metamorphic High Electron Mobility Transistor” Jpn, J. Appl. Phys., vol. 44, p. 5903, 2005.
[92] H. S. Yoon, J. H. LEE, J. Y. Shin, D. M. Kang, J. Y. Hong, W. J. Chang, K. H. Lee, H. C. Kim and K. IK Cho, “Power and DC Characteristics of 0.2 µm Double Pulse Doped In0.52Al0.48As/In0.53Ga0.47As Metamorphic HEMTs” J. Korean Phys. Soc., vol. 42, p. S434, 2003
[93] Fazal Ali and Aditya Gupta, HEMTs and HBTs: Devices, Fabrication, and Circuits, p.97, Artech House, Boston , 1991.
[94] M. H. Somerville, A. Ernst, and J. A. Del Alamo, “A physical model for kink effect in InAlAs/InGaAs HEMT’s,” IEEE Trans. Electron. Devices, vol. 47, p. 922, 2000
[95] A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M. Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney, “AlInAs-GaInAs HEMTs utilizing low-temperature AlInAs buffers grown by MBE,” IEEE Electron Device Lett., vol. 10, p. 565, 1989.
[96] T. Suemitsu, H. Fushimi, S. Kodama, S. Tsunashima, and S. Kimura, “Influence of Hole Accumulation on the source resistance, kink effect and on-state breakdown of InP-based HEMTs: light irradiation study,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 456. 2001.
[97] Y. Hori and M. Kuzubara, “Improved model for kink effect in AlGaAs/InGaAs heterojunction FET’s,” IEEE Trans. Electron Devices, vol. 41, p. 2262, 1994.
[98] T. Enoki, T. Kobayashi, and Y. Ishii, “Device technologies for InP-based HEMT’s and their applications to ICs,” in IEEE GaAs IC Symp., p. 337, 1994.
[99] T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa, and Y. Ishii, “An analysis of the kink phenomena in InAlAs/InGaAs HEMT’s using two-dimensional device simulation,” IEEE Trans. Electron. Devices, vol. 45, p. 2390, 1998.
[100] Y. S. Lin, S. S. Lu and Y. J. Wang, “High-performance GaInP/GaAs airbridge gate MISFET’s grown by GSMBE,” IEEE Trans. Electron Devices, vol. 44, p. 921, 1997.
[101] S. S. Lu, C. C Meng, Y. S. Lin, and H. Lan, “The effect of gate recess profile on device performance of Ga0.51In0.49P/In0.2Ga0.8As doped-channel FET’s,” IEEE Trans. Electron Devices, vol. 46, p. 48 , 1999.
[102] D. H. Kim, H. H. Noh, S. S. Choi, J. H. Lee, and K. S. Seo, “ Passivation Study for In0.4AlAs/In0.65GaAs HEMTs by UHV RPECVD grown SiNx Dielectrics and their impact on I-V kink & low-frequency dispersion phenomena,” in Proc. Int. Conf. Indium Phosphide and Related Materials, 2004, p 354.
[103] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K.K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition,” Appl. Phys. Lett., vol. 84, p. 434, 2004.
[104] P. A. Parikh, S. S. Shi, J. Ibettson, E. L. Hu, and U. K. Mishra, “Hydrogenation of GaAs MISFETs with Al2O3 as the gate insulator”, IEEE Electron Letters, vol. 32, no.18, p.1724 , 1996.
[105] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, p. 1, 2006.
[106] N. C. Paul, K. Nakamura, H. Seto, K. Iiyama, and A. Takamiya, “oxidation of InAlAs/InGaAs metal oxide semiconductor high electron mobility transistor,” Jan. J. Appl. Phys. , vol. 44, p. 1174, 2005.
[107] N. C. Paul, M. Takebe, M. Tametou, H. Seto, Y. Fujino, K. Iiyama and S. Takamiya “n-channel, p-channel, Depletion, Enhancement GaAs Metal-Insulator-Semiconductor Field Effect Transistors with Gate Films Formed by Oxi-nitridation of GaAs Surfaces”, International Conference on Indium Phosphide and Related Materials, p. 246, 2005.
[108] K. W. Lee, N. Y. Yang, M. P. Hong, and Y. H. Wang “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate” Appl. Phys. Lett., vol. 87, p. 2635011, 2005.
[109] M. Takebe, K. Nakamura, N.C. Paul, K. Iiyama, and S. Takamiya, “GaAs-MISFETs With Insulating Gate Films Formed by Direct Oxidation and by Oxinitridation of Recessed GaAs Surfaces”, IEEE Tran. Electron Device, vol. 51, no. 3, p. 311, 2004.
[110] E. I. Chen, N. Holonyak, Jr., and S. A. Maranowski “AlxGa1-xAs – GaAs metal-oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs”, Appl. Phy. Lett., vol. 66, p 2688, 1995.
[111] C. B. Demclo, D. C. Hall, G. L. Snider, D. Xu, G. Kramer, and N. E. Zein, “High electron mobility InGaAs-GaAs field effect transistor with thermally oxidized AlAs gate insulator”, IEEE Electron Device Let., vol. 36, no. 1, p.84, 2000.
[112] H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid Phase Chemical-Enhanced Oxidation for GaAs Operated Near Room Temperature”, Jpn, J. Appl. Phys., vol. 37, no. 1, p. L67, 1998.