| 研究生: |
林峻偉 Lin, Chun-Wei |
|---|---|
| 論文名稱: |
具有寬輸入電壓範圍之臭氧驅動系統設計與研製 Design and Implementation of Ozone-Driven Systems with Wide-Input Voltage Range |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 寬輸入電壓範圍 、臭氧驅動電路 、修正型半橋電路 |
| 外文關鍵詞: | Wide-input voltage range, ozone-driven system, modified half-bridge circuit |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研提具有寬輸入電壓範圍之臭氧驅動系統,而此研究乃考量目前臭氧驅動系統使用不同輸入電源作為輸入電壓時,未能有效驅動負載臭氧陶瓷載子芯片,同時諧振電路之電壓增益尚不足以符合負載需求,必須額外加裝變壓器以提升輸出電壓層級。故本論文提出修正型半橋電路,可將輸入電壓轉換為不同輸出電壓準位,同時設計諧振電路使其具有高電壓增益,以節省額外變壓器之裝置成本,進而藉由責任週期之調變控制技術,不僅達成寬輸入電壓範圍需求,實現零電壓切換,並可藉由回授控制,達成輸出定電流之目標。又為驗證本文所提電路之可行性,本文經由模擬軟體與硬體電路進行實驗測試分析,實驗結果輔以佐證本論文所設計之臭氧驅動系統確具實際應用價值。
This thesis proposes an ozone-driven system with wide-input voltage range. This study is motivated because the traditional ozone-driven system often used different voltage sources as the input voltage, leading to the difficulty of driving the ozone ceramic chip. Moreover, since the voltage gain of resonant circuit fails to satisfy the load demands, a transformer to boost the voltage is additionally hence required. To improve these demerits, the thesis proposes a modified half-bridge circuit integrated with a resonant inverter so that input voltage can be converted to different voltage levels. In the study, the resonant circuit is well designed such that it comes with a high voltage gain and the transformer cost can be largely saved. The study also suggests a duty-cycle modulation approach by which the wide-input voltage range is achieved, the zero-voltage switching is realized, and the constant-current is completed with the feedback control. To validate the feasibility of this proposed circuit, both software simulations and hardware experiments have been made. Experimental results support the practical value of the designated ozone-driven system.
[1] M. Amjad, Z. Salam, M. Facta, and S. Mekhilef, ”Analysis and Implementation of Transformerless LCL Resonant Power Supply for Ozone Generation,” IEEE Transactions on Power Electronics, Vol. 28, No. 2, pp. 650-660, February 2013.
[2] J. G. Patil and T. Vijayan, ”Characterisitcs of High-Tension-Induced Corona-Discharge Plasma in Ozone Generator Diode,” IEEE Transactions on Plasma Science, Vol. 38, No. 9, pp. 2422-2427, September 2010.
[3] M. Nur, A. Solichin, E. Kusdiayantini, T. A. Winarni, Susilo, D. A. Rahman, R. Maryam, S. Teke, Wuryanti, and H. Muharam, ”Ozone Production by Dielectric Barrier Discharge Plasma for Microbial Inactvation in Rice,” IEEE International conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, Bandung, Indonesia, pp. 221-225, November 2013.
[4] U. Kogelschatz, ”Dielectric Barrier Discharge:Their History, Discharge Physics, and Industrial Applications,” International Journal of Plasma Chemistry and Plasma Processing, Vol. 23, No. 1, pp. 1-46, March 2013.
[5] M. V. Selam, A. Allende, F. L. Gálvez, M. A. Conesam and M. I. Gil, ”Disinfection Potential of Ozone, Ultraviolet-C and Their Combination in Wash Water for the Fresh-Cut Vegetable Industry,” International Journal of Food Microbiology, pp. 809-814, March 2008.
[6] A, Suksri, K. Karnchanalekha, K. Tonmitra, and P. Apiratikul, ”A Comparative Study on Suitable High Voltage Sources for Ozone Generation,” IEEE International conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology, Pattaya, Thailand, Vol. 1, pp. 296-299, May 2009.
[7] M. Gołkowski, Z. Gołkowski, J. Leszczynski, S. R. Plimpton, P. Gołkowski, A. Foltynowicz, J. Ye, and B. McCollister, ”Hydrogen- Peroxide-Enhanced Nonthermal Plasma Effluent for Biomedical Applications,” IEEE Transactions on Plasma Science, Vol. 40, No. 8, pp. 1984-1991, August 2012.
[8] N. Takamura, T. Matsumoto, D. Wang, T. Namihira, and H. Akiyama, ”Ozone Generation Using Positive-and Negativenano-Seconds Pulsed Discharges,” IEEE Pulsed Power Conference, Chicago, USA, pp. 1300-1303, June 2011.
[9] A. G. Lyublinsky, S. V. Korotkov, Y. V. Aristov, and D. A. Korotkov, ”Pulse Power Nanosecond-Range DSRD-Based Generators for Electric Discharge Technologies,” IEEE Transactions on Plasma Science, Vol. 41, No. 10, pp. 2625-2629, October 2013.
[10] T. Matsumoto, D. Wang, T. Namihira, and H. Akiyama, ”Gas Temperaure Measurements of Nano-Seconds Pulsed Discharge Based Ozonizer,” IEEE Pulsed Power Conference, Chicago, USA, pp. 1088-1092, June 2011.
[11] D. Wang, M. Matsuda, T. Matsumoto, T. Namihira, and H. Akiyama, ”Energy Transfer Efficiency of Nano-seconds Pulsed Power Generator for Nonthermal Plasma Processing Technique,” IEEE Transaction on Dielectrics and Electrical Insulation, Vol. 18, No. 4, pp. 1091-1096, August 2011.
[12] C. M. Liu, Y. Nishida, K. Iwasaki, and K. Ting, ”Prolonged Preservation and Sterilization of Fresh Plants in Controlled Environments Using High-Field Plasma,” IEEE Transactions on Plasma Science, Vol. 39, No. 2, pp. 717-724, February 2011.
[13] M. Amjad and Z. Salam, ”Analysis, Design, and Implementation of Multiple Parallel Ozone Chambers for High Flow Rate,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, pp. 753-765, February 2014.
[14] Y. C. Shin, B. Kim, and K. C. Ko, ”Considerations on the DBD Power Supply for Surface Change of Ozone Reactor,” IEEE International Power Modulator and High Voltage Conference, Atlanta, USA, pp. 679-685, May 2010.
[15] D. Wang, M. Jikuya, S. Yoshida, T. Namihira, S. Katsuki, and H. Akiyama, ”Positive- and Negative-Pulsed Streamer Discharges Generated by a 100-ns Pulsed-Power in Atmospheric Air,” IEEE Transactions on Plasma Science, Vol. 35, No. 4, pp. 1098-1103, August 2007.
[16] T. Namihira, T. Tokuichi, D. Wang, S. Katsuki, and H. Akiyama, ”Characterization of Nano-Seconds Pulsed Streamer Discharges,” IEEE Pulsed Power Conference, Albuquerque, USA, pp. 572-575, June 2007.
[17] J. M. Alonso, J. García, A. J. Calleja, J. Ribas, and J. Cardesín, ”Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation Based on Current-Fed Parallel-Resonant Push–Pull Inverter,” IEEE Transactions on Industry Applications, Vol. 41, No. 5, pp. 1364-1372, September/October 2005.
[18] V. Kinnares and P. Hothongkham, ”Circuit Analysis and Modeling of a Phase-Shifted Pulsewidth modulation Full-Bridge-Inverter-Fed Ozone Generator With Constant Applied Electrode Voltage,” IEEE Transactions on Power Electronics, Vol. 25, No. 7, pp. 1739-1752, July 2010.
[19] P. Hothongkham and V. Kinnares, ”Measurement of an Ozone Generator Using a Phase-Shifted PWM Full Bridge Inverter,” IEEE International Power Electronics Conference, Sapporo, Japan, pp. 1552-1559, June 2010.
[20] O. Koudriavtsev, S. Wang, Y. Konishi, and M. Nakaoka, ”A Novel Pulse-Density-Modulated High-FrequencyInverter for Silent-Discharge- Type Ozonizer,” IEEE Transactions on Industry Applications, Vol. 38, No. 2, pp. 369-378, March/April 2002.
[21] S. Wang, M, Nakaoka, and Y. Konishi, ”DSP-based PDM & PWM Type Voltage-Fed Load-Resonant Inverter with High-Voltage Transformer for Silent Discharge Ozonizer,” IEEE Power Electronics Specialists Conference, Fukuoka, Japan, Vol. 1, pp. 159-164, May 1998.
[22] J. M. Alonso, C. Ordiz, M. A. D. Costa, J. Ribas, and J. Cardesín, ”High-Voltage Power Supply for Ozone Generation Based on Piezoelectric Transformer,” IEEE Transactions on Industry Applications, Vol. 45, No. 4, pp. 1513-1523, July/August 2009.
[23] Z. Salam, M. Facta, and M. Amjad, ”Design and Implementation of a Highly Efficient DBD Ozonizer Using the Single Switch Resonant Converter with Piezoelectric Transformer,” IEEE Applied Power Electronics Conference and Exposition, California, USA, pp. 1596- 1600, March 2013.
[24] J. M. Alonso, J. Cardesín, E. L. Corominas, M. R. Secades, and J. García, ”Low-Power High-Voltage High-Frequency Power Supply for Ozone Generation,” IEEE Transactions on Industry Applications, Vol. 40, No. 2, pp. 414-421, March/April 2004.
[25] M. P. Silva, J. A. Ramirez, E. Beutelspacher, J. M. Calderson, and C. Cortes, ”Single-Switch Power Supply based on the Class E Shunt Amplifier for Ozone Generators,” IEEE Power Electronics Specialists Conference, Florida, USA, pp. 1380-1385, June 2007.
[26] M. Facta, Z. B. Salam, and Z. B. Buntat, ”The Development of Ozone Generation with Low Power Consumption,” IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, Monash, Malaysia, pp. 440-445, July 2009.
[27] J. M. Alonso, C. Ordiz, D. Gacio, J. Ribas, and A. J. Calleja, ”Closed-loop Regulated Power Supply for Ozone Generation based on Buck Converter and Current-Fed Push-pull Resonant Inverter,” IEEE European Conference on Power Electronics and Applications, Barcelona, Spain, pp. 1-10, September 2009.
[28] H. Hu, X. Fang, F. Chen, Z. J. Shen, and I. Batarseh, ”A Modified High-Efficiency LLC Converter With Two Transformers for Wide Input-Voltage Range Applications,” IEEE Transactions on Power Electronics, Vol. 28, No. 4, pp. 1946-1960, April 2013.
[29] I. O. Lee and G. W. Moon, ”Analysis and Design of a Three-Level LLC Series Resonant Converter for High and Wide-Input-Voltage Applications,” IEEE Transactions on Power Electronics, Vol. 27, No. 6, pp. 2966-2979, June 2012.
[30] Z. Liang, R. Guo, G. Wang, and A. Huang, ”A New Wide Input Range High Efficiency Photovoltaic Inverter,” IEEE Energy Conversion Congress and Exposition, Georgia, USA, pp. 2937-2943, September 2010.
[31] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, ”Using LLC Resonant Converter for Designing Wide-Range Voltage Source,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, pp. 1746-1756, May 2011.
[32] T. LaBella, W. Yu, J. S. Lai, M. Senesky, and D. Anderson, ”A Bidirectional-Switch-Based Wide-Input Range High-Efficiency Isolated Resonant Converter for Photovoltaic Applications,” IEEE Transactions on Power Electronics, Vol. 29, No. 7, pp. 3473-3484, July 2014.
[33] K. H. Yoon, Y. J. Noh, S. Phum, S. Meas, S. H. Jang, and E. S. Kin, ”LLC Resonant Converter with Wide Input Voltage and Load Range at Fixed Switching Frequency,” IEEE Applied Power Electronics Conference and Exposition, Florida, USA, pp. 1338-1342, February 2012.
[34] B. G. Chung, K. H. Yoon, S. Phum, E. S. Kin, and J. S. Won, ”A Novel LLC Resonant Converter for Wide Input Voltage and Load Range,” IEEE International Conference on Power Electronics and ECCE Asia, Jeju, Korea, pp. 2825-2830, May 2011.
[35] Y. S. Shin, S. S. Hong, D. J. Kin, D. S. Oh, and S. K Han, ”A New Mode Changeable Full Bridge DC/DC Converter for Wide Input Voltage Range,” IEEE International Conference on Power Electronics and ECCE Asia, Jeju, Korea, pp. 2328-2335, May 2011.
[36] B. Saha and R. Y. Kim, ”High Power Density Series Resonant Inverter Using an Auxiliary Switched Capacitor Cell for Induction Heating Applications,” IEEE Transactions on Power Electronics, Vol. 29, No. 4, pp. 1909-1918, April 2014.
[37] C. H. Chang, E. C. Chang, and H. L Cheng, ”A High-Efficiency Solar Array Simulator Implemented by an LLC Resonant DC-DC Converter,” IEEE Transactions on Power Electronics, Vol. 28, No. 6, pp. 3039-3046, June 2013.
[38] S. H. Cho, C. S. Kim, and S. K. Han, ”High-Efficiency and Low-Cost Tightly Regulated Dual-Output LLC Resonant Converter,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 7, pp. 2982-2991, July 2012.
[39] M. Ponce, R. Vázquez, J. Arau, and D. Abud, ”Class E Amplifiers Used as A High Power Factor Electronic Biallasts for Fluorescent Lamps in A Single Stage,” IEEE Power Electronics Specialists Conference, Fukuoka, Japan, Vol. 2, pp. 2009-2015, May 1998.
[40] M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters, John Wiley & Sons, Incorporated, 1995.
[41] L. F. Shi and W. G. Jia, ”Mode-Selectable High-Efficiency Low-Quiescent- Current Synchronous Buck DC-DC Converter,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, pp. 2278-2285, May 2014.
[42] J. D. Dasika, B. Bahrani, M. Saeedifard, A. Karimi, and A. Rufer, ”Multivariable Control of Single-Inductor Dual-Output Buck Converters,” IEEE Transactions on Power Electronics, Vol. 29, No. 4, pp. 2061-2070, April 2014.
[43] T. LaBella and J. S. Lai, ”A Hybrid Resonant Converter Utilizing a Bidirectional GaN AC Switch for High-Efficiency PV Applications,” IEEE Applied Power Electronics Conference and Exposition, Texas, USA, pp. 1-8, March 2014.
[44] V. Bist and B. Singh, ”An Adjustable-Speed PFC Bridgeless Buck–Boost Converter-Fed BLDC Motor Drive,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, pp. 2665-2677, June 2014.
[45] N. Altintas, A. F. Bakan, and Í. Aksoy, ”A Novel ZVT-ZCT-PWM Boost Converter,” IEEE Transactions on Power Electronics, Vol. 29, No. 1, pp. 256-265, January 2014.
[46] P. Goli and W. Shireen, ”PV Integrated Smart Charging of PHEVs Based on DC Link Voltage Sensing,” IEEE Transactions on Smart Grid, Vol. 5, No. 3, pp. 1421-1428, May 2014.
[47] B. Akin, ”An Improved ZVT–ZCT PWM DC–DC Boost Converter With Increased Efficiency,” IEEE Transactions on Power Electronics, Vol. 29, No. 4, pp. 1919-1926, April 2014.
[48] V. Esteve, J. Jordán, E. S. Kilders, E. J. Dede, E. Maset, J. B. Ejea, and A. Ferreres, ”Improving the Reliability of Series Resonant Inverters for Induction Heating Applications,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, pp. 2564-2572, May 2014.
[49] J. Park and S. Choi, ”Design and Control of a Bidirectional Resonant DC-DC Converter for Automotive Engine/Battery Hybrid Power Generators,” IEEE Transactions on Power Electronics, Vol. 29, No. 7, pp. 3748-3757, July 2014.
[50] D. Florez, R. Diez, and H. Piquet, ”DCM-Operated Series-Resonant Inverter for the Supply of DBD Excimer Lamps,” IEEE Transactions on Industry Applications, Vol. 50, No. 1, pp.86-93, January/February 2014.
[51] J. A. M. Ramos, J. Díaz, A. M. Pernía, J. M. Lopera, and F. Nuño, ”Dynamic and Steady-State Models for the PRC-LCC Resonant Topology With a Capacitor as Output Filter,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 4, pp. 2262-2275, August 2007.
[52] J. Liu, K. W. E. Cheng, and J. Zeng, ”A Unified Phase-Shift Modulation for Optimized Synchronization of Parallel Resonant Inverters in High Frequency Power System,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 7, pp. 3232-3247, July 2014.
[53] J. Díaz, P. J. V. Saíz, J. A. M. Ramos, A. M. Pernia, and J. A. Martínez, ”A High-Voltage AC/DC Resonant Converter Based on PRC With Single Capacitor as an Output Filter,” IEEE Transactions on Industrial Applications, Vol. 46, No. 6, pp. 2134-2142, November/ December 2010.
[54] J. L. Sosa, M. Castilla, J. Miret, L. G. D. Vicuña, and J. Matas, ”Modeling and Performance Analysis of the DC/DC Series–Parallel Resonant Converter Operating With Discrete Self-Sustained Phase-Shift Modulation Technique,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, pp. 697-705, March 2009.
[55] A. A. Aboushady, K. H. Ahmed, S. J. Finney, and B. W. Willams, ”Linearized Large Signal Modeling, Analysis, and Control Design of Phase-Controlled Series-Parallel Resonant Converters Using State Feedback,” IEEE Transactions on Power Electronics, Vol. 28, No. 8, pp. 3896-3911, August 2013.
[56] R. Yang, H. F. Ding, Y. Xu, L. Yai, and Y. M. Xiang, ”An Analytical Steady-State Model of LCC Type Series–Parallel Resonant Converter With Capacitive Output Filter,” IEEE Transactions on Power Electronics, Vol. 29, No. 1, pp. 328-338, January 2014.
[57] R. Casanueva, F. J. Azcondo, and C. Brañas, ”Output Current Sensitivity Analysis of the LCpCs Resonant Inverter: Current-Source Design Criteria,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, pp. 1560-1568, June 2007.
[58] S. Chudjuarjeen, A. Sangswang, and C. Koompai, ”An Improved LLC Resonant Inverter for Induction-Heating Applications With Asymmetrical Control,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 7, pp. 2915-2925, July 2011.
[59] T. Mishima and M. Nakaoka, ”A Novel High-Frequency Transformer- Linked Soft-Switching Half-Bridge DC-DC Converter With Constant- Frequency Asymmetrical PWM Scheme,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, pp. 2961-2969, August 2009.
[60] dsPIC30F4011/4012, Microchip Technology Incorporated, 2005.
[61] IRFP450PbF Data Sheet, International Rectifier, 2003.
[62] AP9972GP/S-HF-3 Data Sheet, Advanced Power Electronics Corporated, 2010.
[63] LM339-N Data Sheet, Texas Instruments Incorporated, 2013.
[64] IR2110Pbf Data Sheet, International Rectifier, 2005.
[65] Photocouplers TLP250H Data Sheet, TOSHIBA Corporation, 2013.
[66] Photocouplers TLP350H Data Sheet, TOSHIBA Corporation, 2012.
[67] H. L Chan, K. W. E. Cheng, T. K. Cheung, and C. K. Cheung, ”Study on Magnetic Materials Used in Power Transformer and Inductor,” IEEE International Conference on Power Electronics Systems and Applications, Hong Kong, pp. 165-169, November 2006.
[68] “Soft Ferrites and Accessories Data Handbook,” Ferroxcube, Yageo Company, 2013.
[69] “Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors,” ASTM International, 2014.
校內:2024-12-31公開