簡易檢索 / 詳目顯示

研究生: 錢立展
Chien, Li-Jhan
論文名稱: 具高轉換比之新型三埠轉換器
A Novel Three-port Converter with High Voltage Gain
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 106
中文關鍵詞: 三埠轉換器高轉換比雙向轉換器
外文關鍵詞: three-port converter, high voltage gain, bidirectional converter
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於使用元件少及體積較小等優點,三埠轉換器在獨立型的再生能源供電系統應用中廣受歡迎。傳統上,非隔離型之三埠轉換器由於電路升壓比受到寄生元件的限制,並不適合用於高輸入輸出轉換比的應用;隔離型之三埠轉換器可藉由調整各埠變壓器的匝數比來達到較高的電壓轉換比,但此類型電路所需元件較多,且變壓器中的漏感會降低轉換效率。本論文提出一具有高轉換比之新型三埠轉換器,透過結合應用於高升壓電路中的升壓技巧,並將其整併於非隔離型之三埠轉換器之中,使本文所提出之轉換器用較小匝數比及適當的開關導通率讓兩個低壓輸入端達到升壓的功能,故本轉換器可以同時達到高轉換比及高效率。本文將詳細說明此轉換器的操作原理、穩態分析、邊界導通分析及轉換器的設計流程等。最後實作出一組具低輸入電壓PV埠,雙向低電壓電池埠及高電壓輸出埠之實驗電路,並搭配數位信號處理控制器(digital signal processor, DSP)來驗證本論文之理論分析。

    Three-port converters are popular for stand-alone renewable system applications because of less components and smaller volume. Conventionally, non-isolated three-port converters are not suitable for high conversion ratio applications, because the voltage gain is limited by the parasitic elements of circuit. Isolated three-port converters can achieve high conversion ratio by adjusting the turns ratio of the transformer, but the component count is high and the leakage inductance of the transformer will reduce the efficiency of the circuit. In this thesis, a novel three-port converter with high conversion ratio is proposed. The converter combines techniques of high step-up converters with a non-isolated three-port converter; therefore, a higher conversion ratio can be achieved with a lower turns ratio and a reasonable duty ratio. Also, the converter can achieve a high conversion ratio and high efficiency simultaneously. Operating principles, steady-state analysis, and boundary analysis of the converter are presented and discussed. Finally, a prototype of the proposed converter with a low input voltage port for PV source, a bidirectional port for storage elements, and a high voltage port for output is implemented to verify the theoretical analysis. The power flow control of the converter is also built and tested with a digital signal processor (DSP).

    TABLE OF CONTENTS CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Outline of this thesis 4 CHAPTER 2 REVIEW OF TECHNIQUES 5 2.1 Isolated three-port converters 7 2.1.1 Half-bridge three-port converters 7 2.1.2 Phase-shift full-bridge three-port converters 10 2.2 Non-isolated three-port converters 12 2.2.1 Double inductor technique for three-port converters 12 2.2.2 Single inductor technique for three-port converters 14 2.3 High step-up converters 17 2.3.1 Voltage-lift technique of step-up converters 17 2.3.2 Coupled-inductor technique of step-up converters 19 2.3.3 Mixed technique of step-up converters 20 2.4 Comparison and discussion 21 CHAPTER 3 NOVEL THREE-PORT CONVERTER WITH HIGH VOLTAGE GAIN 24 3.1 Topology derivation of the proposed converter 24 3.2 Single input to single output (SISO) mode 26 3.2.1 Operating principle of the proposed converter in SISO mode 27 3.2.2 Steady-state analysis of the proposed converter in SISO mode 37 3.2.3 Boundary condition mode (BCM) analysis 41 3.3 Double input to single output (DISO) mode 43 3.3.1 Operating principle of the proposed converter in DISO mode 43 3.3.2 Steady-state analysis of the proposed converter in DISO mode 48 3.4 Single input to double output (SIDO) mode 49 3.4.1 Operating principle of the proposed converter in SIDO mode 49 3.4.2 Steady-state analysis of the proposed converter in SIDO mode 55 CHAPTER 4 CONTROL METHOD OF THE PROPOSED CONVERTER 57 4.1 Algorithm for duty ratio 58 4.2 MPPT method for IVR 61 4.3 Closed-loop design for OVR 62 4.4 Closed-loop design for BVR 64 4.5 s-to-z conversion 66 CHAPTER 5 DESIGN AND EXPERIMENTAL RESULTS 68 5.1 Component parameters design 69 5.1.1 Inductor and coupled-inductor 69 5.1.2 Capacitors 71 5.1.3 Power devices 72 5.2 Experimental results 73 5.2.1 Experimental results in SISO mode, PV to load 74 5.2.2 Experimental results in SISO mode, battery to load 80 5.2.3 Experimental results in DISO mode 86 5.2.4 Experimental results in SIDO mode 89 5.3 Maximum power point tracking 93 5.4 Experimental results in SIDO mode with CV charging 96 5.5 Conversion efficiency 97 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 99 6.1 Conclusions 99 6.2 Future work 100 REFERENCE 101   LIST OF FIGURES Fig. 1.1 Stand-alone renewable power systems with different architectures 2 Fig. 2.1 Operation modes for three-port converters 6 Fig. 2.2 Three-port half-bridge converter with primary freewheeling 7 Fig. 2.3 Three-port half-bridge converter with synchronous regulation 9 Fig. 2.4 Different primary circuits for half-bridge converters 10 Fig. 2.5 Boost integrated phase-shift full-bridge three-port converter 11 Fig. 2.6 A non-isolated converter with two inductors 13 Fig. 2.7 A boost-type three-port converter 15 Fig. 2.8 Different types of single inductor three-port converters 17 Fig. 2.9 Topologies of voltage-lift boost converters 18 Fig. 2.10 Three types of coupled-inductor converter 20 Fig. 2.11 Coupled-inductor converter with voltage-lift technique 21 Fig. 3.1 The proposed three-port converter 25 Fig. 3.2 Circuit configure of the proposed converter 26 Fig. 3.3 Typical waveforms of the proposed converter in SISO mode 29 Fig. 3.4 Current-flow paths of operating modes in SISO mode (PV to load) 31 Fig. 3.5 Typical waveforms of the proposed converter in SISO mode 34 Fig. 3.6 Current-flow paths of operating modes in SISO mode (battery to load) 36 Fig. 3.7 Voltage gain versus duty-ratio of the proposed converter 40 Fig. 3.8 Critical waveforms of the proposed converter at BCM operation 42 Fig. 3.9 Boundary condition of the proposed converter with n = 5 42 Fig. 3.10 Typical waveforms of the proposed converter in DISO mode 45 Fig. 3.11 Current-flow paths of operating modes in DISO mode 47 Fig. 3.12 Typical waveforms of the proposed converter in SIDO mode 52 Fig. 3.13 Current-flow paths of operating modes in SIDO mode 55 Fig. 4.1 Control diagram for the proposed converter 57 Fig. 4.2 Algorithm flow chart for the proposed converter 59 Fig. 4.3 PWM modulator for the proposed converter 60 Fig. 4.4 Algorithm flow chart of MPPT with P&O method 61 Fig. 4.5 Open-loop control-to-output Bode plot 63 Fig. 4.6 Closed-loop Bode plot with a compensator for output 63 Fig. 4.7 Open-loop control-to-battery Bode plot 65 Fig. 4.8 Closed-loop Bode plot with a compensator for battery port 65 Fig. 4.9 Flow chart of the voltage mode digital control 67 Fig. 5.1 The implementation circuits 68 Fig. 5.2 Measured waveforms under output power Po = 60 W 75 Fig. 5.3 Measured waveforms under output power Po = 120 W 77 Fig. 5.4 Measured waveforms under output power Po = 300 W 79 Fig. 5.5 Load variation between Po = 120 W and Po = 300 W in SISO mode 80 Fig. 5.6 Measured waveforms under output power Po = 60 W 82 Fig. 5.7 Measured waveforms under output power Po = 120 W 83 Fig. 5.8 Measured waveforms under output power Po = 300 W 85 Fig. 5.9 Load variation between Po = 120 W and Po = 300 W in SISO mode 86 Fig. 5.10 Measured waveforms in DISO mode with Po = 320 W 88 Fig. 5.11 Measured waveforms in SIDO mode with Po = 80 W 91 Fig. 5.12 Measured waveforms in SIDO mode with Po = 160 W 93 Fig. 5.13 P-V tracking curve in the SIDO mode with Po = 160 W 94 Fig. 5.14 Waveforms of PV port in SIDO mode 94 Fig. 5.15 P-V tracking curve in the DISO mode with Po = 320 W 95 Fig. 5.16 Waveforms of voltage, current, and power in DISO mode 95 Fig. 5.17 Load variation between Po = 120 W and Po = 300 W in SIDO mode 96 Fig. 5.18 Conversion efficiency in SISO mode 97 Fig. 5.19 Conversion efficiency under constant Ppv and various Po 98   LIST OF TABLES Table 2.1 Component count and voltage gain of three-port converters 22 Table 2.2 Component count and voltage gain of high step-up converters 23 Table 5.1 Specification for the proposed converter 69 Table 5.2 Key parameters of ETD-59 69 Table 5.3 Specification for circuit components 73 Table 5.4 Specification for DelSolar/D6M250B3A 73 Table 5.5 Recorded powers of each port under constant Ppv and various Po 98

    [1]
    A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, "Evaluation of current controllers for distributed power generation system," IEEE Trans. Power Electron., vol. 24, no. 2, pp. 654-664, Mar. 2009.
    [2]
    A. M. Salamah, S. J. Finney, and B. W. Williams, "Single-phase voltage source inverter with a bidirectional buck-boost stage for harmonic injection and distributed generation," IEEE Trans. Power Electron., vol. 24, no. 2, pp. 376-387, Feb. 2009.
    [3]
    T. Shimizu, K. Wada, and N. Nakamura, "Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system," IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1264-1272, Sep. 2006.
    [4]
    J. M. Kwon and B. H. Kwon, "High Step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems," IEEE Trans. Power Electron, vol. 24, no. 1, pp. 108-115, Jan. 2009.
    [5]
    R. J. Wai, R. Y. Duan, and K. H. Jheng, "High-efficiency bidirectional dc-dc converter with high-voltage gain," IET Power Electron., vol. 5, no. 2, pp. 137-184, Feb. 2012.
    [6]
    R. Y. Duan and J. D. Lee, "High-efficiency bidirectional dc-dc converter with coupled inductor," IET Power Electron, vol. 5, no. 1, pp. 115-123, Jan. 2012.
    [7]
    E. Sanchis, E. Maset, A. Ferreres, J. B. Ejea, V. Esteve, J. Jordan, J. Calvente, A. Garrigos, and J. M. Blanes, "Bidirectional high-efficiency nonisolated step-up battery regulator," IEEE Trans. Aerospace and Electronic Systems, vol. 47, no. 3, pp. 2230-2239, Jul. 2011.
    [8]
    H. Tao, J. L. Duarte, and M. A. M. Hendrix, "Multiport converters for hybrid power sources," in Proc. IEEE Power Electron. Spec. Conf., Jun. 2008.
    [9]
    K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, "A distributed control strategy based on dc bus singaling for modular photovoltaic generation system with battery energy storage," IEEE Trans. Power Electron., vol. 26, no. 10, pp. 3032-3045, Oct. 2011.
    [10]
    K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, "Bifurcation analysis of standalone photovoltaic-battery hybrid power system," IEEE Trans. Circuits and Systems, vol. 60, no. 5, pp. 1354-1365, Apr. 2013.
    [11]
    D. Liu and H. Li, "A ZVS bi-directional dc-dc converter for multiple energy storage elements," IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1513-1517, Sep. 2006.
    [12]
    Y. M. Chen, Y. C. Liu, and F. Y. Wu, "Multi-input dc/dc converter based on the multiwinding transformer for renewable energy applications," IEEE Trans. Ind. Applicaions., vol. 38, no. 4, pp. 1096-1104, Jul. 2002.
    [13]
    J. L. Durate, M. Hendrix, and M. G. Simoes, "Three-port bidirectional converter for hybrid fuel cell system," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480-487, Mar. 2007.
    [14]
    C. Zhao, S. D. Round, and J. W. Kolar, "An isolated three-port bidirectional dc-dc converter with decoupled power flow management," IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, Sep. 2008.
    [15]
    H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, "Three-port triple-half-bridge bidirectional converter with zero-voltage switching," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 782-792, Mar. 2008.
    [16]
    H. Krishnaswami and N. Mohan, "Constant switching frequency series resonant three-port bi-directional DC-DC converter," in Power Electron. Spec. Conf., 2008.
    [17]
    K. Haribaran and N. Mohan, "Three-port series-resonant dc-dc converter to interface renewable energy sources with bidirectional load and energy storage ports," IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2289-2297, Oct. 2009.
    [18]
    Z. Zhang, O. C. Thomsen, M. A. E. Anderson, and H. R. Nielsen, "Dual-input isolated full-bridge boost dc–dc converter based on the distributed transformers," IET Power Electron., vol. 5, no. 7, pp. 1074-1083, Aug. 2012.
    [19]
    Z. Qian, O. Abdel-Rahman, H. Al-Atrash, and I. Batarseh, "Modeling and control of three-port DC/DC converter interface for satellite applications," IEEE Trans. Power Eletron., vol. 25, no. 3, pp. 637-649, Mar. 2010.
    [20]
    Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, "Multi-channel three-port DC/DC converters as maximum power tracker, battery charger and bus regulator," in Applied Power Electron. Conf. APEC, Feb. 2010.
    [21]
    F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, "A new ZVS bidirectional DC-DC converter for fuel cell and battery application," IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54-65, Jan. 2004.
    [22]
    Z. Qian, O. Abdel-Rahman, H. Hu, and I. Batarseh, "An intergrated four-port dc-dc converter for renewable energy applications," IEEE Trans. Power Eletron., vol. 25, no. 7, pp. 1877-1887, Jul. 2010.
    [23]
    H. Wu, R. Chen, J. Zhang, Y. Xing, H. Hu, and H. Ge, "A family of three-port half-bridge converters for a stand-alone renewable power system," IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2697-2706, Sep. 2011.
    [24]
    A. Hussam, F. Tian, and I. Batarseh, "Tri-modal half-bridge converter topology for three-port interface," IEEE Trans. Power Electron., vol. 22, no. 1, pp. 341-345, Jan. 2007.
    [25]
    H. Al-Atrash, M. Pepper, and I. Batarseh, "A zero-voltage switching three-port isolated full-bridge Converter," in Telecoms. Energy Conf., Sep. 2006.
    [26]
    A. Di Napoli, F. Crescimbini, S. Rodo, and L. Solero, "Multiple input dc-dc power converter for fuel-cell powered hybrid vehicles," IEEE Power Electron. PESC, vol. 4, pp 1685-1690, Jun. 2002.
    [27]
    Y. C. Liu and Y. M. Chen, "A systematic approach to synthesizing multi-input dc-dc converters," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 116-127, Jan. 2009.
    [28]
    R. J. Wai, C. Y. Lin, and Y. R. Chang, "High step-up bidirectional isolated converter with two input power source," IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2629-2643, Jul. 2009.
    [29]
    N. Vazquez, C. M. Sanchez, C. Hernandez, E. Vazquez, and R. Lesso, "A three port converter for renewable energy applications," IEEE International Symposium. ISIE, Jun. 2011.
    [30]
    S. H. Hosseini, S. Danyali, and S. A. K. M. N. F. Nejabatkhah, "Modeling and control of a new three-input dc-dc boost converter for hybrid PV/FC/battery power system," IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309-2324, May. 2012.
    [31]
    H. Wu, K. Sun, S. Ding, and Y. Xing, "Topology derivation of nonisolated three-port dc-dc converter from DIC and DOC," IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3297-3307, Jul. 2013.
    [32]
    S. H. Hosseini, S. Danyali, and S. A. K. M. N. F. Nejabatkhah, "Multi-input dc boost converter for grid connected hybrid PV/FC/battery power system," Electric Power and Energy Conf. EPEC, Aug. 2010.
    [33]
    Q. Wang, J. Zhang, X. Ruan, and K. Jin, "Isolated single primary winding multiple-input converters," IEEE Trans. Power Eletcrion., vol. 26, no. 12, pp. 3435-3442, Dec. 2011.
    [34]
    Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "A novel high step-up dc-dc converter for a microgrid system," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127-1136, Apr. 2011.
    [35]
    F. L. Luo, "Six self-lift dc-dc converters, voltage lift technique," IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268-1272, Dec. 2011.
    [36]
    F. L. Luo and H. Ye, "Positive output super-lift converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105-113, Jan 2003.
    [37]
    Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65-73, Jan. 2003.
    [38]
    T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan 2008.
    [39]
    F. Zhang, L. Du, F. Z. Peng, and Z. Qian, "A new design method for high-power high-efficiency switched-capacitor dc-dc converters," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
    [40]
    O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, "Step-up switching-mode converterwith high voltage gain using a switched-capacitor circuit," IEEE Trans. Circuits and Systems I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
    [41]
    K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar 2004.
    [42]
    K. C. Tseng and T. J. Liang, "Analysis of integrated boost-flyback step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 152, no. 2, pp. 217-225, Mar. 2005.
    [43]
    Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "Novel high Step-up dc-dc converter for distributed gereration sytem," IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1473-1482, Apr. 2013.

    無法下載圖示 校內:2018-07-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE