簡易檢索 / 詳目顯示

研究生: 陳成家
Chen, Cheng-Jia
論文名稱: 以奈米研磨分散技術製備具近紅外光光熱轉換特性之奈米粒子
Preparation of nanoparticles with near infrared photothermal conversion property via nano-grinding/dispersion technology
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 六硼化鑭氧化銫鎢研磨分散近紅外光光熱轉換
外文關鍵詞: LaB6, Cs0.33WO3, grinding and dispersion, NIR photothermal conversion
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關以奈米研磨分散技術製備具近紅外光光熱轉換特性之奈米粒子的研究,探討研磨及分散條件對於粒徑、結構、光學、及光熱轉換特性的影響,共包括六硼化鑭及氧化銫鎢奈米粒子兩個部份。
    關於六硼化鑭奈米粒子系統的部分,六硼化鑭奈米粒子成功經由奈米研磨分散技術製備。其中陰離子型十二烷基苯磺酸(DBS) 界面活性劑適合應用於六硼化鑭乙二醇分散液之製備,但使用陽離子型聚乙烯亞胺(PEI)界面活性劑及非離子型聚乙二醇2000(PEG2000)界面活性劑無法得到穩定之分散液。三種不同直徑之研磨介質皆可將六硼化鑭之平均水力直徑研磨分散至100奈米左右,當使用直徑為50微米之研磨介質進行研磨時,雖然研磨速度較慢但可使六硼化鑭奈米粒子在乙二醇分散液中之粒徑分布均勻性較佳。本實驗製備之六硼化鑭奈米粒子的結構確認仍保持為立方晶相,而由氧化鋯研磨介質所造成之雜質汙染則低於5 wt.%。此外六硼化鑭奈米粒子在波長1000奈米附近有特性吸收且具有較奈米金殼優異之近紅外光光熱轉換性質。因為六硼化鑭奈米粒子相對便宜,且較奈米金殼容易製備,因此具有應用於生醫光熱治療上所需近紅外光光熱轉換材料之潛能。
    關於氧化銫鎢奈米粒子系統的部分,氧化銫鎢奈米粒子成功經由奈米研磨分散技術製備。當使用直徑50微米之研磨介質研磨粗顆粒氧化銫鎢粉體,可在3小時內將氧化銫鎢之平均水力直徑研磨分散至50奈米,藉由靜電斥力機制可得到pH值等於8之穩定氧化銫鎢奈米粒子水分散液。此外氧化銫鎢奈米粒子由於自由電子與極子之作用因此在近紅外光區域具有強烈之吸收與光熱轉換性質。隨氧化銫鎢奈米粒子濃度上昇或粒徑下降,近紅外光吸收與光熱轉換性質愈加顯著。當氧化銫鎢奈米粒子水分散液之濃度為0.08 wt.%時,分散液經近紅外線雷射(808 nm, 2.47 W/cm2)照射10分鐘後,溫度明顯增加約30oC。此外經計算氧化銫鎢奈米粒子之光熱轉化效率約為73%,且具備優異之光熱穩定性。因此具有應用於生醫光熱治療上所需近紅外光光熱轉換材料之潛能。

    This dissertation concerns the preparation of nanoparticles with near infrared photothermal conversion property via nano-grinding/dispersion technology. The effects of preparation conditions on the particle size, structure, and optical and NIR photothermal conversion properties were investigated. Two systems were studied, including LaB6 and Cs0.33WO3 nanoparticles.
    LaB6 nanoparticles have been prepared successfully by a stirred bead milling process. The anionic surfactantdodecylbenzenesulfonic acid was found to be suitable for the grinding and dispersion of LaB6 powders, but cationic surfactant polyethyleneimine and nonionic surfactant polyethylene glycol couldnot yield a stable dispersion. Three kinds of grinding beads with the diameters of 50, 100, and 200 µm all could reduce the mean hydrodynamic diameter of LaB6 powders to about 100 nm. However, although the grinding rate was slower, using the smaller grinding beads with a diameter of 50 µm could yield a dispersion of LaB6 nanoparticles with more uniform size. The resulting LaB6nanoparticles were confirmed to remain a cubic structure and the contaminant from ZrO2 beads was below 5 wt%. Furthermore, the LaB6 nanoparticles exhibited a characteristic absorption around 1000 nm and possessed an excellent near infrared (NIR) photothermal conversion property better than Au nanoshells. Because they were relatively cheap and easy-to-preparation than Au nanorods or nanoshells, the LaB6 nanoparticles could be used as a novel and effective NIR photothermal conversion material and might find great potential in the biomedical application.
    Cs0.33WO3 nanoparticles have been prepared successfully by a stirred bead milling process. By grinding micro-sized coarse powder with grinding beads of 50 μm in diameter, the mean hydrodynamic diameter of Cs0.33WO3 powder could be reduced to about 50 nm in 3 h, and a stable aqueous dispersion could be obtained at pH 8 via electrostatic repulsion mechanism. After grinding, the resulting Cs0.33WO3 nanoparticles retained the hexagonal structure and had no significant contaminants from grinding beads. Furthermore, they exhibited a strong characteristic absorption and an excellent photothermal conversion property in the near-infrared (NIR) region, owing to the free electrons or polarons. Also, the NIR absorption and photothermal conversion property became more significant with decreasing particle size or increasing particle concentration. When the concentration of Cs0.33WO3 nanoparticles was 0.08 wt. %。the solution temperature had a significant increase of above 30°C in 10 min under NIR irradiation (808 nm, 2.47 W/cm2). In addition, they had a photothermal conversion efficiency of about 73% and possessed excellent photothermal stability. Such an effective NIR absorption and photothermal conversion nanomaterial not only was useful in the NIR shielding, but also might find great potential in biomedical application.

    總目錄 頁次 中文摘要……………………………………………...…………….. I 英文摘要…...……………….………………………...…………….. III 誌謝…...……………….………………………...………………….. V 總目錄……………………………………………………………...…. VI 表目錄………………………………………………...…………….. IX 圖目錄………………………………………………...…………….. X 第一章 緒論 1 1.1 奈米材料與技術………..……………………………………… 1 1.1.1前言………………….………………………………... 1 1.1.2奈米材料的定義…………….…………………………... 1 1.1.3奈米材料的特性………………….………………….... 4 1.1.4奈米材料的應用……………………………………………. 15 1.1.5奈米材料的製備……………………………………………. 15 1.2奈米研磨分散技術……...…………………………...…….. 19 1.2.1前言…………………………………………………………. 19 1.2.2奈米研磨分散技術. …………………………………... 19 1.2.3奈米研磨分散原理…………………………………………. 22 1.2.4奈米研磨分散設備…………………………………………. 23 1.3奈米光熱轉換材料…………………………............... 31 1.3.1前言………………………………………………………… 31 1.3.2六硼化鑭……………………………………………….…… 32 1.3.3氧化銫鎢……………………………………………………. 38 1.4研究動機與內容………………………….………..…….... 40 第二章 基礎理論 41 2.1奈米粉體的分散與表面改質…………………………………… 41 2.1.1膠體的穩定與失穩…………………………………………. 43 2.1.2 DLVO理論………………………………………………….. 47 2.1.3分散劑效應…………………………………………………. 51 2.2表面電漿共振理論……………………………………...……. 53 2.3光熱轉換理論………………………………………………..... 57 第三章 材料與方法 59 3.1實驗藥品……………………………...…………..….…….. 59 3.2實驗儀器………………………………………………………… 60 3.3實驗材料………………………………...………………..…. 62 3.4製備方法…………..……………………………………….…. 62 3.4.1六硼化鑭奈米粒子乙二醇分散液之製備……………... 62 3.4.2氧化銫鎢奈米粒子水分散液之製備………………….... 63 3.5.性質測定與分析……............................. 63 第四章 結果與討論 67 4.1六硼化鑭奈米粒子之研磨分散與近紅外光光熱轉換特性…… 67 4.1.1分散劑之影響….………………..……………….……… 67 4.1.2研磨介質粒徑與研磨時間對粒徑之影響……….… …. 69 4.1.3晶相結構……….……………………………..………. 72 4.1.4光學性質……………………………………………....… 75 4.1.5光熱轉換特性……………………………………..…….. 77 4.2氧化銫鎢奈米粒子之研磨分散與近紅外光光熱轉換特性..... 83 4.2.1 pH值對界面電位之影響……………………..…………. 83 4.2.2研磨時間對粒徑之影響…………..……………………… 85 4.2.3晶相結構……………………………………………………. 88 4.2.4光學性質……………………………………………………. 91 4.2.5光熱轉換特性………………………………………………. 94 第五章 結論……………………………………….……..……. 103 參考文獻……………………………………………………...….. 104 自述……………………………………………..………………... 113 表目錄 表1.1 奈米材料的定義………………………………………….. 3 表1.2 銅粒子粒徑與表面能量之關係………………………….. 6 表1.3 奈米材料的應用範圍…………………………………….. 16 表1.4 奈米粉體之製程技術…………………………………….. 18 表1.5 不同濕式研磨分散設備之優缺點………………………... 20 表1.6 常見陶瓷材料性質表.......………………………………… 29 表1.7 六硼化鑭材料之鍵結分佈、分佈離子強度及鍵結長度. 34 表1.8 六硼化鑭材料之基本性質………………………………... 36 表1.9 三價金屬六硼化物材料之熱激發性質…………………... 36 圖目錄 圖1.1 奈米尺度之示意圖…………………………………………... 2 圖1.2 奈米材料幾何結構的分類…………………………………... 3 圖1.3 粒子大小與原子分佈在粒子內部及表面比例之關係……... 5 圖1.4 粒子尺寸(0D-3D)與能量狀態之關係………………………. 7 圖1.5 不同半導體奈米材料之能隙與粒徑的關係………………... 9 圖1.6 不同粒徑之CdSe@ZnS核殼型半導體奈米粒子在紫外燈照射下之照片......................................……………... 9 圖1.7 金奈米粒子之粒徑與熔點的關係…………………………... 11 圖1.8 鎳奈米粒子之粒徑與保磁力的關係………………………... 11 圖1.9 銅奈米粒子之粒徑與硬度的關係…………………………... 12 圖1.10 理想單電子傳送之電流電壓曲線圖………………………... 14 圖1.11 奈米材料之製備方式………………………………………... 17 圖1.12 Ball mill 示意圖….............................. 20 圖1.13 Attritor (Stirred ball mill)示意圖……………….. 21 圖1.14 Media mill 示意圖…………………………………………... 21 圖1.15 珠磨分散機制示意圖............................. 22 圖1.16 傳統與微介質分散之剪力面差異…………………………... 23 圖1.17 批次式(a)及循環式(b)奈米研磨分散設備…………………. 25 圖1.18 各種不同形式之攪拌葉片設計…………………………….. 26 圖1.19 靜態間隙分離(a)及動態離心分離(b)示意圖………………. 27 圖1.20 以高頻電漿熱融技術製備之微米研磨介質………………... 30 圖1.21 直徑為50,30、15及7微米研磨介質SEM影像圖…………. 30 圖1.22 金奈米粒子、金奈米棒及金殼層結構示意圖………………. 32 圖1.23 六硼化鑭材料之晶體結構示意圖........................................... 33 圖1.24 六硼化鑭奈米材料隨平均粒徑大小變化之穿透、吸收、散射、反射光譜圖………………………………………………. 38 圖1.25 氧化銫鎢之鎢青銅結構……………………………………... 40 圖2.1 奈米結構的研究與應用領域………………………………... 42 圖2.2 膠粒電雙層結構示意圖……………………………………... 45 圖2.3 膠體微粒的穩定機制………………………................. 46 圖2.4 DLVO理論示意圖……………………..................... 49 圖2.5 銅奈米粒子在不同pH之總作用位能(a)pH 3(b)pH 9.5…… 50 圖2.6 金屬粒子在一電場下的運動行為(極化)示意圖.............. 54 圖2.7 奈米粒子內部能量傳遞示意圖……………………………... 58 圖3.1 奈米研磨分散設備裝置圖…………………………………... 60 圖3.2 動態光散射儀原理…………………………............... 64 圖3.3 光熱轉換量測系統裝置示意圖……………………………... 66 圖4.1 以不同界面活性劑研磨製備六硼化鑭乙二醇分散液在研磨後研靜置2小時之外觀照片圖(b)…………...................................68 圖4.2 六硼化鑭以不同直徑之研磨介質(a)50微米(b)100微米(c)200微米在乙二醇溶液中研磨,平均水力直徑對時間之變化圖. ……………………………70 圖4.3 六硼化鑭研磨前(a)及以不同直徑之研磨介質(a)50微米(b)100微米(c)200微米在乙二醇溶液中研磨後之TEM影像圖………………………......71 圖4.4 硼化鑭研磨前(a)及以不同直徑研磨介質(b)50微米(c)100微米(d)200微米,研磨後粉XRD分析圖…………...........................73 圖4.5 六硼化鑭奈米粒子(a)電子繞射圖及(b)高解析電子顯微鏡晶格影像圖…………………...........................................74 圖4.6 六硼化鑭研磨前與研磨後奈米粒子在不同濃度在乙二醇溶液中之UV-VIS-NIR吸收光譜圖………………...............................76 圖4.7 六硼化鑭奈米粒子在不同濃度下, (a)時間與溫度關係圖及(b)濃度與溫度關係圖……………………...................................78 圖4.8 不同粒徑之六硼化鑭粒子分散液其時間與溫度關係圖, (濃度為0.008wt.%)…………………...................................80 圖4.9 六硼化鑭奈米粒子乙二醇分散液與六硼化鑭奈米粒子再 分散在水溶液中之粒徑分布比較圖….……........................ 81 圖4.10 1 vol.%六硼化鑭奈米粒子水溶液升溫速度圖…………...... 82 圖4.11 氧化銫鎢奈米粒子水分散液、不同pH值對界面電位之變化圖……… 84 圖4.12 氧化銫鎢水分散液平均水力直徑對研磨時間之變化圖;內插圖(a) 氧化銫鎢水分散液研磨1、2及3小時之粒徑分布變化圖;內插圖(b)氧化銫鎢水分散液在研磨前、後(3小時)之外觀圖…............................. 86 圖4.13 氧化銫鎢水分散液中(a)研磨前及不同研磨時間下(b)1小時、(c) 2小時及(d) 3小時之TEM影像圖…................................. 87 圖4.14 氧化銫鎢研磨前(a)及研磨(b)1小時(b)2小時及(c)3小時之XRD分析圖………................................................. 89 圖4.15 氧化銫鎢奈米粒子(a)高解析電子顯微鏡及(b) 電子繞射圖晶格影像圖(C)EDX元素分析圖(研磨時間3小時).............................90 圖4.16 氧化銫鎢水分散液研磨前(a)及不同研磨時間下之UV-VIS-NIR光譜分析圖(濃度為0.008wt.%)…………….............................92 圖4.17 不同濃度下氧化銫鎢奈米粒子水分散液之UV-VIS-NIR光譜分析圖(研磨3小時) ………………………………………........................93 圖4.18 氧化銫鎢水分散液在固定濃度下(0.008%)下,空白水溶液、研磨前及研磨後時間各為1、2及3小時, 時間與溫度關係圖…………………………...98 圖4.19 不同濃度下氧化銫鎢奈米粒子水分散液,時間與溫度關係圖(研磨3小時) ……………………………............................ 99 圖4.20 光熱轉換效率計算,近紅外光雷射關閉後,氧化銫鎢水分散液溫度遞減曲線圖.................................................. 100 圖4.21 氧化銫鎢奈米粒子水分散液,經5個近紅外光照射循環,時間與溫度關係圖(研磨3小時,濃度0.08wt.%) .............................101 圖4.22 氧化銫鎢奈米粒子,經5個近紅外光照射循環前後TEM圖(研磨時間為3小時,濃度0.08wt.%)……………………........................ 102

    參考文獻
    1. R. P. Feynman, A lecture in engineering and science. In California Institute of Technology February edn (1960)
    2. 蘇品書譯,超微粒子材料技術,臺南:復漢 (1989)。
    3. 張志焜、崔作林,納米技術與納米材料,北京:國防工業 (2000)。
    4. 張立德、奈米材料,北京:化學工業 (2000)。
    5. 張立德、牟季美,奈米材料和奈米結構,北京:科學 (2001)。
    6. http://www.sc.doe.gov/production/bes/scale_of_things.html
    7. 王崇人,科學發展,6,354 (2002)。
    8. 郭正次、朝春光,奈米結構材料科學,臺北:全華 (2004)。
    9. K. J. Klabunde, Introduction to Nanotechnology. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, 1 (2001)
    10. 工研院工業材料研究所材料奈米技術專刊,臺北:經濟部技術處(2001)。
    11. G. Schmid, Metals. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, 59 (2001)
    12. 尹邦耀,奈米時代,臺北:五南 (2002)。
    13. 廖敏宏,磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文 (2002)。
    14. 馬振基,奈米材料科技—原理與應用,臺北:全華 (2004)。
    15. R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, M. J. Natan, J. Phys. Chem., 100, 718 (1996)
    16. A. M. Michaels, J. Jiang, L. Brus, J. Phys. Chem. B, 104, 11965 (2000)
    17. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, F. R. Aussenegg, Appl. Phys. Lett., 82, 3095 (2003)
    18. L. H. Lu, H. J. Zhang, G. Y. Sun, S. Q. Xi, H. S. Wang, X. L. Li, X. Wang, B. Zhao, Langmuir, 19, 9490 (2003)
    19. M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi, T. Pal, J. Nanoparticle Res., 6, 53 (2004)
    20. M. T. Harrison, S. V. Kershaw, M. G. Burt, A. L. Rogach, A. Kornowski, A. Eychmüller, H. Weller, Pure Appl. Chem., 72, 295 (2000)
    21. M. Han, X. Gao, J. Z. Su, S. Nie, Nat. Biotechnol., 19, 631 (2001)
    22. S. N. Alamri, A. W. Brinkman, J. Phys. D: Appl. Phys., 33, L1 (2000)
    23. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nat. Biotechnol., 22, 969 (2004)
    24. S. K. Haram, B. M. Quinn, A. J. Bard, J. Am. Chem. Soc., 123, 8860 (2001)
    25. S. G. Hickey, D. J. Riley, E. J.Tull, J. Phys. Chem. B, 104, 7623 (2000)
    26. W. J. Parak, D. Gerion, D. Zanchet, A. S. Woerz, T. Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E. Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi, A. P. Alivisatos, Chem. Mater., 14, 2113 (2002)
    27. A. S. Edelstein, R. C. Cammarata, Nanomaterials: Synthesis, Properties and Applications. Bristol: Institute of Physics Publishing (1996)
    28. 吳國卿、董玉蘭,奈米粒子材料的觸媒性質,化工資訊 5月:42 (1999)。
    29. 黃德歡,改變世界的奈米技術,臺北:瀛舟 (2002)。
    30. 莊萬發,超微粒子理論應用,臺南:復漢 (1998)。
    31. 史宗淮,微粉製程技術簡介,化工,42,28 (1995)。
    32. R. W. Siegel, E. Hu, M. C. Roco, WTEC panel report on nanostructure science and technology:R&D status and trends in nanoparticles, nanostructured materials, and nanodevices. Boston:Kluwer Academic (1999)
    33. 林景正、賴宏仁,奈米材料技術與發展趨勢,工業材料,153,95 (1999)
    34. 馬遠榮,奈米科技,臺北:商周 (2002)。
    35. N. Toshima, T. Yonezawa, New. J. Chem., 1179 (1998)
    36. 黃淑娟,化工資訊月刊 16,4,34 (2002)。
    37. 賴耿陽,工業分散技術,臺北:復漢 (1989)。
    38. 陳成家,淺談奈米研磨分散技術,工業材料雜誌,237,83 (2006)。
    39. 徐敬添、張義和、簡維誼、蔡書雅奈米微分散技術與材料應用,工業材料(奈米技術專刊),140 (2001)。
    40. 日本大研化學,高頻電漿熱熔技術及研磨介質產品資料 (2012)。
    41. G. Fu, W. Liu, S. Feng, X. Yue, Chem. Commun., 48, 11567 (2012)
    42. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, H. Dai, J. Am. Chem. Soc., 133, 6825 (2011)
    43. L. Cheng, K. Yang, Q. Chen, Z. Liu, ACS Nano, 6, 5605 (2012)
    44. J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, T. Hyeon, Angew. Chem. Int. Ed., 45, 7754 (2006)
    45. W. C. Huang, P. J. Tsai, Y. C. Chen, Small, 5, 1, 51 (2009)
    46. J. Lee, J. Yang, H. Ko, S. J. Oh, J. Kang, J. H. Son, K. Lee, S. W. Lee, H. G. Yoon, J. S. Suh, Y. M. Huh, S. Haam, Adv. Funct. Mater., 18, 258 (2008)
    47. P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Nanotoday, 2, 1, 18 (2007)
    48. F. Y. Cheng, C. T. Chen, C. S. Yeh, Nanotechnology, 425104 (2009)
    49. F. M. Hossain, D. P. Riley, G. E. Murch, Phys. Rev. B, 72, 235101 (2005)
    50. S. Schelm, G. B. Smith, Appl. Phys. Lett., 82, 4346 (2003)
    51. A. A. Marchenko, V. V. Cherepanov, D. T. Tarashchenko, Z. I. Kazantseva, A. G. Naumovets, Surf. Sci., 416, 460 (1998)
    52. R. W. Tohnson, A. H. Dannw, J. Phys. Chem., 65, 199 (1961)
    53. J. M. Lafferty, J. Appl. Phys., 22, 299 (1951)
    54. B. V. Philips Export, JCPD file of LaB6, 34, 0427 (1990)
    55. H. Ahmed, A. N. Broers, J. Appl. Phys., 43, 2185 (1972)
    56. L. W. Swanson, T. Dickson, Appl. Phys. Lett., 28, 578 (1976)
    57. 黃啟祥、林江財,陶瓷材料技術 (下),中華民國產業科技發展協進會與中華民國粉末冶金協會 (1994)。
    58. H. E. Gallagher, J. Appl. Phys., 40, 44 (1969)
    59. D. H. Templetion, C. H. Dauben, J. Am. Chem. Soc., 76, 5237 (1954)
    60. H. Zhang, J. Tang, Q. Zhang, G. Zhao, G. Yang, J. Zhang, O. Zhou, L. C. Qin, Adv. Mater., 18, 87 (2006)
    61. J. Xu, Y. Zhao, C. Zou, Chem. Phys. Lett., 423, 138 (2006)
    62. M. Zhang, L. Yuan, X. Wang, H. Fan, X. Wang, X. Wu, H. Wang, Y. Qian, J. Solid State Chem., 181, 294 (2008)
    63. H. Takeda, H. Kuno, K. Adachi, J. Am. Ceram. Soc., 91, 2897 (2008)
    64. K. Adachi, M. Miratsu, J. Mater. Res., 25, 510 (2010)
    65. S. Schelm, G. B. Smith, P. D. Garrett, W. K. Fisher, J. Appl. Phys., 97, 124314 (2005)
    66. C. H. Ruscher, K. R. Dey, T. Debnath, I. Horn, R. G. A. Hussain, J.Solid State Chem., 181, 90 (2008)
    67. F. Krumeich, R. Nesper, J. Solid State Chem., 179, 1857 (2006)
    68. J. Guo, C. Dong, L. Yang, G. Fu, H. Chen, Mater. Res. Bull., 41, 655 (2006)
    69. F. J. Castro, F. Tonus, J. L. Bobet, G. Urretavizcaya, J. Alloys Compd., 495, 537 (2010)
    70. G. Urretavizcaya, F. Tonus, E. Gaudin, J. L. Bobet, F. J. Castro, J. Solid State Chem., 180, 2785 (2007)
    71. J. Guo, C. Dong, L. Yang, G. Fu, H. Chen, Mater. Res. Bull., 42, 1384 (2007)
    72. K. R. Dey, C. H. Ruscher, Th. M. Gesing, A. Hussain, Mater. Res. Bull., 42, 591 (2007)
    73. H. Kamal, A. A. Akl, K. Abdel-Hady, Physica B, 349, 192 (2004)
    74. L. Chen, S. C. Tsang, Sensors Actuators B, 89, 68(2003)
    75. L. Berggren, J. Ederth, G. A. Niklasson, Sol. Energy Sol. Cells, 84, 329(2004)
    76. R. Azimirad, M. Goudarzi, O. Akhavan, A. Z. Moshfegh, Vacuum, 82, 821 (2008)
    77. S. Raj, D. Hashimoto, H. Matsui, S. Souma, T. Sato, T. Takahashi, S. Ray, A. Chakraborty, D. D. Sarma, P. Mahadevan, S. Oishi, W. H. McCarroll, M. Greenblatt, J. Magn. Magn. Mater., 310, e231 (2007)
    78. Z. Gu, Y. Ma, T. Zhai, B. Gao, W. Yang, J. Yao, Chem. Eur. J, 12 ,7717 (2006)
    79. J. Guo, C. Dong, L. Yang, H. Chen, Mater. Res. Bull, 43, 779 (2008)
    80. Q. Zhong, K. Colbow, Thin Solid Films, 196, 305 (1991)
    81. G. Leitus, H. Cohen, S. Reich, Physica C, 371, 321 (2002)
    82. Z. Barkay, E. Grunbaum, G. Leitus, S. Reich, J. Supercond. Nov. Magn., 21, 145 (2008)
    83. H. Takeda, K. Adachi, J. Am. Ceram. Soc., 90, 4059 (2007)
    84. J. X. Liu, Y. Ando, X. L. Dong, F. Shi, S. Yin, K. Adachi, T. Chonan, A. Tanaka, T. Sato, J. Solid State Chem., 183, 2456 (2010)
    85. C. Guo, S. Yin, M. Yan, T. Sato, J. Mater. Chem., 21, 5099 (2011)
    86. J. Liu, X. Wang, F. Shi, Z. Peng, J. Luo, Q. Xu, P. Du, Adv. Mater. Res., 531, 235 (2012)
    87. C. Guo, S. Yin, L. Huang, L. Yang, T. Sato, Chem. Commun., 47, 8853 (2011)
    88. C. Guo, S. Yin, L. Huang, T. Sato, ACS Appl. Mater. Interfaces, 3, 2794 (2011)
    89. C. Guo, S. Yin, Y. Huang, Q. Dong, T. Sato, Langmuir, 27, 12172 (2011)
    90. C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T. Sato, Inorg. Chem., 51, 4763 (2012)
    91. C. Guo, S. Yin, Q. Dong, T. Sato, Nanoscale, 4, 3394 ( 2012)
    92. R. W. Siegel, E. Hu, M. C. Roco, Nano structure science and technology, in http://itri.loyola.edu/nano/final/
    93. 江龍,膠體化學概論,北京:科學出版 (2002)
    94. 王果庭,膠體穩定性,北京:科學出版 (1990)
    95. J. Th. G. Overbeck, Powder Technol., 37, 195 (1984)
    96. D. H. Napper, J. Colloid Interf. Sci., 58, 390 (1977)
    97. D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4thed, Butterworth Heinemann (1992)
    98. R. J. Hunter, Introduction to Modern Colloid Science, Oxford Science (1993)
    99. B. V. Derjaguin, L. Laudau, Acta Physicochimica USSR, 14, 633 (1941)
    100. E. J. W. Verway, J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids, Elsevier (1948)
    101. X. Li, D. Zhu, X. Wang, J. Colloid Interf. Sci., 310, 456 (2007)
    102. A. Alemdar, O. Atici, N. Gungor, Mater. Lett., 43, 57 (2000)
    103. M. Colic, G. Franks, M. Fisher et al., J. Am. Ceram. Soc., 81, 8, 2157 (1998)
    104. 陳毓宏,新穎的奈米粒子合成方法與在生醫上的應用:金銀,金鈀,金,國立成功大學化學研究所博士論文(2003)。
    105. J. C. Weaver, Y. A. Chizmadzhev, Bioelectrochem. Bioenerg., 41, 135 (1996)
    106. G. Mie, Ann. Phys., 25, 377 (1908)
    107. U. Kreibig, C. V. Z. Fragstein, Phys., 224, 307 (1969)
    108. K. Selby, M. Vollmer, J. Masui, V. Kersin, W. A. de Heer, W. D. Knight, Phys. Rev. B, 40, 5417 (1989)
    109. P. Mulvaney, Langmuir, 12, 788(1996)
    110. 吳杰儒,奈米微粒雷射熱治療效率提升技術之研發,國立成功大學機械工程學系,研究所碩士論文 (2006)。
    111. R. D. Fedorovich, A. G. Naumovets, P. M. Tomchuk, Phys. Rep., 328, 73 (2000).
    112. C. Voisin, N. D. Fatti, D. Christofilos, F. Valle, J. Phys. Chem. B, 105, 2264 (2001).
    113. N. S. Pramana, J. Phys., 63, 1083 (2004).
    114. P. M. Tomchuk1, V. V. Kulish, J. Phys. Stud., 8, 127 (2004).
    115. http://www.malvern.com/LabEng/technology/dynamic_light_scattering/nibs.htm
    116. Chen HJ, Shao L, Ming T, Sun ZH, Zhao CM, Yang BC, Wang JF, Small, 6, 2272 (2010)
    117. Fu G, Liu W, Feng S, Yue X, Chem. Commun. , 48, 1156 (2012)

    下載圖示 校內:2015-08-02公開
    校外:2016-08-02公開
    QR CODE