簡易檢索 / 詳目顯示

研究生: 蔡硯安
Cia, Yan-An
論文名稱: 動態多型加速的多層級程式自動生成
Automatic Multi-Level Programs Generation for Dynamic Polymorphic Accelerating
指導教授: 周哲民
Jou, Jer-Min
郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 61
中文關鍵詞: 人工智慧計算多層級指令動態多型加速器情境指令
外文關鍵詞: Artificial Intelligence Computation, Multi-level Instructions, Dynamic Polymorphic Accelerators, Context Instructions
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著人工智慧計算需求的急速增長,計算硬體設計正持續進步與創新。本研究專注於探討多層級指令在動態多型加速器中的應用。我們提出了一種包含三個階段指令的設計框架:首先是任務階層指令,負責高層次的任務規劃和調度,包括選擇適當的計算流程和資源配置;其次是執行硬體運作的低階層指令,用於實際的計算操作和資料讀取;最後是情境指令,用於精細的硬體控制,特別是在資料路徑的架構決策上。這種多層級指令結構旨在增強動態多型加速器處理複雜人工智慧計算任務的效率和應用靈活性。本研究深入探討了這一設計框架的概念和實踐方法,並探索了其在實際應用中的可行性和挑戰。

    In recent years, driven by the rapid growth in demand for artificial intelligence computations, the field of computational hardware design has been experiencing continuous innovation and advancement. This study focuses on exploring the application of multi-level instruction sets in dynamic polymorphic accelerators. We propose a design framework comprising three stages of instructions: firstly, task-level instructions responsible for high-level task planning and scheduling, including selecting appropriate computation flows and resource configurations; secondly, execution-level instructions used for actual computation operations and data retrieval within the hardware; and finally, context instructions employed for precise hardware control, particularly in decisions regarding the architecture of the data path. This multi-level instruction structure aims to enhance the efficiency and application flexibility of dynamic polymorphic accelerators in handling complex artificial intelligence computing tasks. The study delves into the conceptualization and practical methods of this design framework, exploring its feasibility and potential challenges in real-world applications.

    摘要 I SUMMARY II PROPOSED DESIGN II EXPERIMENTS VI CONCLUSION VII 誌謝 VIII 目錄 IX 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 論文架構 2 第二章 背景知識與相關研究 3 2.1 卷積神經網路(Convolutional Neural Network) 3 2.2 變換器 (Transformer) 5 2.3 底層虛擬機器中介碼 (LLVM IR) 8 2.4 OpenMP 10 第三章 多層級程式設計 14 3.1 動態多型硬體架構 14 3.2 高階指令架構 15 3.3 動態多型硬體低階程式 20 第四章 低階多型平行語言產生 21 4.1 任務控制資料流圖生成 21 4.2 平行流描述生成 25 4.3 指令集架構(Instruction Set Architecture, ISA) 26 4.4 低階指令生成 27 第五章 情境指令產生(Context Instruction) 33 5.1 情境指令應用與格式 33 5.2 情境指令生成 35 5.3 情境指令對硬體的特殊組合 38 第六章 實驗結果與討論 39 6.1 指令自動生成效率 40 6.2 對於注意力機制的不同排程。 41 第七章 結論與未來展望 45 7.1 結論 45 7.2 未來展望 45 參考文獻 46

    [1] E. Cambria and B. White, "Jumping NLP curves: A review of natural language processing research," IEEE Computational Intelligence Magazine, vol. 9, no. 2, pp. 48-57, 2014, doi: 10.1109/MCI.2014.2307227.
    [2] "Advances in Neural Information Processing Systems," in 31st Annual Conference on Neural Information Processing Systems, NIPS 2017, December 4, 2017 - December 9, 2017, Long Beach, CA, United states, 2017, vol. 2017-December: Neural information processing systems foundation, in Advances in Neural Information Processing Systems.
    [3] C. Lattner and V. Adve, "LLVM: A compilation framework for lifelong program analysis & transformation," in International Symposium on Code Generation and Optimization, CGO 2004, March 20, 2004 - March 24, 2004, San Jose, CA, United states, 2004: Institute of Electrical and Electronics Engineers Computer Society, in International Symposium on Code Generation and Optimization, CGO, pp. 75-86, doi: 10.1109/CGO.2004.1281665. [Online]. Available: http://dx.doi.org/10.1109/CGO.2004.1281665
    [4] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory programming," IEEE computational science and engineering, vol. 5, no. 1, pp. 46-55, 1998.
    [5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Commun. ACM, vol. 60, no. 6, pp. 84-90, 2017, doi: 10.1145/3065386.
    [6] M. T. Camacho Olmedo, M. Paegelow, J.-F. o. Mas, and F. Escobar, "Geomatic approaches for modeling land change scenarios. An introduction," Geomatic Approaches for Modeling Land Change Scenarios, pp. 1-8, 2018.
    [7] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in 3rd International Conference on Learning Representations, ICLR 2015, May 7, 2015 - May 9, 2015, San Diego, CA, United states, 2015: International Conference on Learning Representations, ICLR, in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings.
    [8] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, June 26, 2016 - July 1, 2016, Las Vegas, NV, United states, 2016, vol. 2016-December: IEEE Computer Society, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770-778, doi: 10.1109/CVPR.2016.90. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2016.90
    [9] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.
    [10] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
    [11] K. Xu et al., "Show, attend and tell: Neural image caption generation with visual attention," in International conference on machine learning, 2015: PMLR, pp. 2048-2057.
    [12] F. Yu and V. Koltun, "Multi-scale context aggregation by dilated convolutions," arXiv preprint arXiv:1511.07122, 2015.
    [13] W. Ouyang et al., "Deepid-net: Deformable deep convolutional neural networks for object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 2403-2412.
    [14] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, "Object detection with deep learning: A review," IEEE transactions on neural networks and learning systems, vol. 30, no. 11, pp. 3212-3232, 2019.
    [15] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440.
    [16] D. Shen, G. Wu, and H.-I. Suk, "Deep learning in medical image analysis," Annual review of biomedical engineering, vol. 19, no. 1, pp. 221-248, 2017.
    [17] D. W. Ruck, S. K. Rogers, and M. Kabrisky, "Feature selection using a multilayer perceptron," Journal of neural network computing, vol. 2, no. 2, pp. 40-48, 1990.
    [18] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, "Self-attention generative adversarial networks," in International conference on machine learning, 2019: PMLR, pp. 7354-7363.
    [19] G. Bebis and M. Georgiopoulos, "Feed-forward neural networks," Ieee Potentials, vol. 13, no. 4, pp. 27-31, 1994.
    [20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2018.
    [21] Y. Liu et al., "Roberta: A robustly optimized bert pretraining approach," arXiv preprint arXiv:1907.11692, 2019.
    [22] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter," arXiv preprint arXiv:1910.01108, 2019.
    [23] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, "Improving language understanding by generative pre-training," 2018.
    [24] A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE