| 研究生: |
許新宗 Hsu, Hsin-Tsung |
|---|---|
| 論文名稱: |
不同路易士鹼官能基對鈣鈦礦太陽能電池缺陷的鈍化效應 Passivation Effects of Different Lewis Bases on Defects of Perovskite Solar Cells |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 216 |
| 中文關鍵詞: | 缺陷鈍化 、十二胺 、十二酸 、甲基胺基碘化鉛 、鈣鈦礦太陽能電池 、12-氨基月桂酸 、苯磺酸鈉 、十二烷基硫酸鈉 |
| 外文關鍵詞: | defect passivation, dodecylamine, dodecylic acid, MAPbI3, perovskite solar cells, 12-aminolauric acid, sodium benzenesulfonate, sodium dodecyl sulfate |
| 相關次數: | 點閱:49 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦的缺陷是電荷的再結合中心,對於鈣鈦礦太陽能電池的性能有害。為了減少缺陷密度,第一部份以十二胺(DAM)、十二酸(DAC)和12-氨基月桂酸(ALA)作為添加劑來製備鈣鈦礦薄膜,本研究探討了這些分子對甲基胺基碘化鉛(MAPbI3)薄膜的鈍化效應。結果表明,含有胺基團(-NH2)和羧酸基團(-COOH)的DAM和DAC可以增加器件的光電轉換效率,由於這兩個基團是典型的路易斯鹼,可以鈍化配位不足的Pbx+缺陷。對於ALA分子,-NH2和-COOH基團同時存在於分子的兩端,鈍化能力比其他分子更顯著,這歸因於兩個基團的協同作用。透過ALA的鈍化處理,PSC的光電轉換效率可以在一太陽照射下從18.42%提高到19.96%(冠軍效率為20.32%,穩定效率為19.68%),此外,鈍化劑的長碳鏈也提高了鈣鈦礦薄膜的疏水性,使PSC的穩定性提升。
第二部分以苯磺酸鈉(SBS)與十二烷基硫酸鈉(SDS)離子化合物作為鈣鈦礦薄膜之修飾劑,其擁有鈉陽離子(Na+)與磺酸根(SO3-)/硫酸根(SO4-)陰離子基團,透過陰陽離子的協同作用分別鈍化正電缺陷(VI+, MAi+, Pbi2+)與負電缺陷(VMA-與IPb3-)。由於SDS的長碳鏈作為推電子基團增強了陰離子與鈣鈦礦之間的離子與路易士交互作用,導致SDS的連接行為、晶粒成長與缺陷鈍化皆比SBS更加顯著。透過SDS的鈍化處理,PSC的光電轉換效率可以在一太陽照射下從18.84%提升至20.33%(冠軍效率為20.70%,穩定效率為20.61%),並獲得可忽略的遲滯行為,不僅如此,Na+離子可存在於[PbI6]4-間係以提升碘離子的遷移活化能,這避免了鈣鈦礦與銀電極的破壞,提高PSC的穩定性。
Defects in perovskite film are sources of charge recombination centers, which are detrimental to the performance of perovskite solar cells (PSCs). To decrease the density of defects, dodecylamine (DAM), dodecylic acid (DAC), and 12-aminolauric acid (ALA) are utilized as additives to prepare methyl ammonium lead iodide (MAPbI3) perovskite films. Herein, the passivation effects of these molecules on the properties of the MAPbI3 films and the performances of the corresponding PSCs are studied. The results show that DAM and DAC which contain –NH2 and –COOH groups, respectively, can increase the PCEs of the devices. This result implies that both groups serve as the Lewis base, passivating the defects of undercoordinated Pbx+. For the ALA molecules, the –NH2 and –COOH groups are present simultaneously at the two ends of the molecule; the passivation ability is more significant than the others, which is attributable to the synergistic effects of the two groups. By the passivation of ALA, the PCE of the PSC can increase from 18.42% to 19.96% (with the highest efficiency of 20.32% and stable efficiency of 19.68%) under one sun illumination. Furthermore, the treatments of the passivation agents also increase the hydrophobicity of the perovskite films, improving the stability of the PSCs.
In the second part, sodium benzenesulfonate (SBS) and sodium dodecyl sulfate (SDS) are used as modifiers for perovskite films. They possess sodium cations (Na+) and sulfonate (SO3-) or sulfate (SO4-) anionic groups. Through the synergistic effect of anions and cations, they passivate positive defects (VI+, MAi+, Pbi2+) and negative defects (VMA- and IPb3-). The long carbon chain of SDS, acting as an electron-donating group, enhances the ionic and Lewis interactions between the anions and the perovskite. This leads to more significant effects on the grain growth and defect passivation compared to SBS. By the passivation with SDS, the PCE of the PSC can be improved from 18.84% to 20.33% under one sun illumination (with a champion efficiency of 20.70% and a stable efficiency of 20.61%). Additionally, the presence of Na+ ions between [PbI6]4- framework increases the activation energy for iodine migration. This prevents the degradation of the perovskite and the silver electrode, thereby improving the stability of the PSC.
[1] National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiency Chart. 2023.
[2] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051, 2009.
[3] Renxing Lin, Jian Xu, Mingyang Wei, Yurui Wang, Zhengyuan Qin, Zhou Liu, Jinlong Wu, Ke Xiao, Bin Chen, So Min Park, Gang Chen, Harindi R. Atapattu, Kenneth R. Graham, Jun Xu, Jia Zhu, Ludong Li, Chunfeng Zhang, Edward H. Sargent, and Hairen Tan. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 603(7899), 73-78, 2022.
[4] Yingzhen Hu, Tingting Niu, Yanghua Liu, Yipeng Zhou, Yingdong Xia, Chenxin Ran, Zhongbin Wu, Lin Song, Peter Müller-Buschbaum, Yonghua Chen, and Wei Huang. Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. ACS Energy Letters, 6(8), 2917-2943, 2021.
[5] Stav Rahmany and Lioz Etgar. Semitransparent Perovskite Solar Cells. ACS Energy Letters, 5(5), 1519-1531, 2020.
[6] Tianran Liu, Xiaoming Zhao, Ping Wang, Quinn C. Burlingame, Junnan Hu, Kwangdong Roh, Zhaojian Xu, Barry P. Rand, Minjie Chen, and Yueh-Lin Loo. Highly Transparent, Scalable, and Stable Perovskite Solar Cells with Minimal Aesthetic Compromise. Advanced Energy Materials, n/a(n/a), 2200402, 2022.
[7] Kai-Li Wang, Yu-Hang Zhou, Yan-Hui Lou, and Zhao-Kui Wang. Perovskite indoor photovoltaics: opportunity and challenges. Chemical Science, 12(36), 11936-11954, 2021.
[8] A. S. Bhalla, Ruyan Guo, and Rustum Roy. The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 4(1), 3-26, 2000.
[9] Jeong-Hyeok Im, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park, and Nam-Gyu Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093, 2011.
[10] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, and Nam-Gyu Park. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1), 591, 2012.
[11] Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka, Takurou N. Murakami, and Henry J. Snaith. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647, 2012.
[12] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin, and Michael Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319, 2013.
[13] Manda Xiao, Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Ye Zhu, Joanne Etheridge, Angus Gray-Weale, Udo Bach, Yi-Bing Cheng, and Leone Spiccia. A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie International Edition, 53(37), 9898-9903, 2014.
[14] Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 13(9), 897-903, 2014.
[15] Sneha A. Kulkarni, Tom Baikie, Pablo P. Boix, Natalia Yantara, Nripan Mathews, and Subodh Mhaisalkar. Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A, 2(24), 9221-9225, 2014.
[16] Nam Joong Jeon, Jun Hong Noh, Woon Seok Yang, Young Chan Kim, Seungchan Ryu, Jangwon Seo, and Sang Il Seok. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480, 2015.
[17] Tsutomu Miyasaka. Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives. Bulletin of the Chemical Society of Japan, 91(7), 1058-1068, 2018.
[18] Wan-Jian Yin, Tingting Shi, and Yanfa Yan. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 104(6), 063903, 2014.
[19] Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, and Jinsong Huang. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347(6225), 967-970, 2015.
[20] Tianran Chen, Wei-Liang Chen, Benjamin J. Foley, Jooseop Lee, Jacob P. C. Ruff, J. Y. Peter Ko, Craig M. Brown, Leland W. Harriger, Depei Zhang, Changwon Park, Mina Yoon, Yu-Ming Chang, Joshua J. Choi, and Seung-Hun Lee. Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites. Proceedings of the National Academy of Sciences, 114(29), 7519-7524, 2017.
[21] Wei E. I. Sha, Xingang Ren, Luzhou Chen, and Wallace C. H. Choy. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106(22), 221104, 2015.
[22] Nevena Marinova, Silvia Valero, and Juan Luis Delgado. Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373-389, 2017.
[23] Hao Huang, Peng Cui, Yan Chen, Luyao Yan, Xiaopeng Yue, Shujie Qu, Xinxin Wang, Shuxian Du, Benyu Liu, Qiang Zhang, Zhineng Lan, Yingying Yang, Jun Ji, Xing Zhao, Yingfeng Li, Xin Wang, Xunlei Ding, and Meicheng Li. 24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule, 6(9), 2186-2202, 2022.
[24] Nam-Gyu Park. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72, 2015.
[25] Lei Meng, Jingbi You, Tzung-Fang Guo, and Yang Yang. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research, 49(1), 155-165, 2016.
[26] Jiangzhao Chen and Nam-Gyu Park. Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 5(8), 2742-2786, 2020.
[27] Fangzhou Liu, Qi Dong, Man Kwong Wong, Aleksandra B. Djurišić, Annie Ng, Zhiwei Ren, Qian Shen, Charles Surya, Wai Kin Chan, Jian Wang, Alan Man Ching Ng, Changzhong Liao, Hangkong Li, Kaimin Shih, Chengrong Wei, Huimin Su, and Junfeng Dai. Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? Advanced Energy Materials, 6(7), 1502206, 2016.
[28] Fabio Matteocci, Lucio Cinà, Enrico Lamanna, Stefania Cacovich, Giorgio Divitini, Paul A. Midgley, Caterina Ducati, and Aldo Di Carlo. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 30, 162-172, 2016.
[29] Yicheng Zhao, Jing Wei, Heng Li, Yin Yan, Wenke Zhou, Dapeng Yu, and Qing Zhao. A polymer scaffold for self-healing perovskite solar cells. Nature Communications, 7(1), 10228, 2016.
[30] Jon M. Azpiroz, Edoardo Mosconi, Juan Bisquert, and Filippo De Angelis. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8(7), 2118-2127, 2015.
[31] Dae-Yong Son, Seul-Gi Kim, Ja-Young Seo, Seon-Hee Lee, Hyunjung Shin, Donghwa Lee, and Nam-Gyu Park. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. Journal of the American Chemical Society, 140(4), 1358-1364, 2018.
[32] Hui-Seon Kim, In-Hyuk Jang, Namyoung Ahn, Mansoo Choi, Antonio Guerrero, Juan Bisquert, and Nam-Gyu Park. Control of I–V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell. The Journal of Physical Chemistry Letters, 6(22), 4633-4639, 2015.
[33] Luis Lanzetta, Thomas Webb, Nourdine Zibouche, Xinxing Liang, Dong Ding, Ganghong Min, Robert J. E. Westbrook, Benedetta Gaggio, Thomas J. Macdonald, M. Saiful Islam, and Saif A. Haque. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nature Communications, 12(1), 2853, 2021.
[34] Wenyuan Zhang, Yuanchao Li, Xin Liu, Dongyan Tang, Xin Li, and Xi Yuan. Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air. Chemical Engineering Journal, 379, 122298, 2020.
[35] Chuantian Zuo, Doojin Vak, Dechan Angmo, Liming Ding, and Mei Gao. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46, 185-192, 2018.
[36] Young Yun Kim, Tae-Youl Yang, Riikka Suhonen, Antti Kemppainen, Kyeongil Hwang, Nam Joong Jeon, and Jangwon Seo. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications, 11(1), 5146, 2020.
[37] Minjin Kim, In-woo Choi, Seung Ju Choi, Ji Won Song, Sung-In Mo, Jeong-Ho An, Yimhyun Jo, SeJin Ahn, Seoung Kyu Ahn, Gi-Hwan Kim, and Dong Suk Kim. Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule, 5(3), 659-672, 2021.
[38] Yi Li, Jun Zhu, Yang Huang, Feng Liu, Mei Lv, Shuanghong Chen, Linhua Hu, Junwang Tang, Jianxi Yao, and Songyuan Dai. Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Advances, 5(36), 28424-28429, 2015.
[39] Zhanglin Guo, Ajay Kumar Jena, Izuru Takei, Gyu Min Kim, Muhammad Akmal Kamarudin, Yoshitaka Sanehira, Ayumi Ishii, Youhei Numata, Shuzi Hayase, and Tsutomu Miyasaka. VOC Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI2Br Perovskite Solar Cells. Journal of the American Chemical Society, 142(21), 9725-9734, 2020.
[40] Jinxia Duan, QingWen Yue, Qiu Xiong, Liqian Wang, Linlu Zhu, Kai Zhang, Jun Zhang, and Hao Wang. Surface modification of SnO2 blocking layers for hysteresis elimination of MAPbI3 photovoltaics. Applied Surface Science, 470, 613-621, 2019.
[41] Zhipeng Li, Li Wang, Ranran Liu, Yingping Fan, Hongguang Meng, Zhipeng Shao, Guanglei Cui, and Shuping Pang. Spontaneous Interface Ion Exchange: Passivating Surface Defects of Perovskite Solar Cells with Enhanced Photovoltage. Advanced Energy Materials, 9(38), 1902142, 2019.
[42] Qingshun Dong, Yantao Shi, Chunyang Zhang, Yukun Wu, and Liduo Wang. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy, 40, 336-344, 2017.
[43] Hanul Min, Do Yoon Lee, Junu Kim, Gwisu Kim, Kyoung Su Lee, Jongbeom Kim, Min Jae Paik, Young Ki Kim, Kwang S. Kim, Min Gyu Kim, Tae Joo Shin, and Sang Il Seok. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598(7881), 444-450, 2021.
[44] Jason J. Yoo, Gabkyung Seo, Matthew R. Chua, Tae Gwan Park, Yongli Lu, Fabian Rotermund, Young-Ki Kim, Chan Su Moon, Nam Joong Jeon, Juan-Pablo Correa-Baena, Vladimir Bulović, Seong Sik Shin, Moungi G. Bawendi, and Jangwon Seo. Efficient perovskite solar cells via improved carrier management. Nature, 590(7847), 587-593, 2021.
[45] Minjin Kim, Jaeki Jeong, Haizhou Lu, Tae Kyung Lee, Felix T. Eickemeyer, Yuhang Liu, In Woo Choi, Seung Ju Choi, Yimhyun Jo, Hak-Beom Kim, Sung-In Mo, Young-Ki Kim, Heunjeong Lee, Na Gyeong An, Shinuk Cho, Wolfgang R. Tress, Shaik M. Zakeeruddin, Anders Hagfeldt, Jin Young Kim, Michael Grätzel, and Dong Suk Kim. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375(6578), 302-306, 2022.
[46] Tianzhao Dai, Qiaojun Cao, Lifeng Yang, Mahmoud H. Aldamasy, Meng Li, Qifeng Liang, Hongliang Lu, Yiming Dong, and Yingguo Yang Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 2021. 11, DOI: 10.3390/cryst11030295.
[47] H Topsöe. Krystallographisch-chemische untersuchungen homologer verbindungen. Zeitschrift für Kristallographie, 8, 246-296, 1884.
[48] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B, 64(Pt 6), 702-7, 2008.
[49] Sebastian F. Hoefler, Gregor Trimmel, and Thomas Rath. Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte für Chemie - Chemical Monthly, 148(5), 795-826, 2017.
[50] Giles E. Eperon, Samuel D. Stranks, Christopher Menelaou, Michael B. Johnston, Laura M. Herz, and Henry J. Snaith. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982-988, 2014.
[51] Junwen Yin, Gilberto Teobaldi, and Li-Min Liu, The role of thermal fluctuations and vibrational entropy for the delta-to-alpha transition in hybrid organic-inorganic perovskites: the FAPbI3 case. 2022.
[52] Andreas Binek, Fabian C. Hanusch, Pablo Docampo, and Thomas Bein. Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. The Journal of Physical Chemistry Letters, 6(7), 1249-1253, 2015.
[53] Xiaojia Zheng, Congcong Wu, Shikhar K. Jha, Zhen Li, Kai Zhu, and Shashank Priya. Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Letters, 1(5), 1014-1020, 2016.
[54] T. Jesper Jacobsson, Juan-Pablo Correa-Baena, Meysam Pazoki, Michael Saliba, Kurt Schenk, Michael Grätzel, and Anders Hagfeldt. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy & Environmental Science, 9(5), 1706-1724, 2016.
[55] Michael Saliba, Taisuke Matsui, Ji-Youn Seo, Konrad Domanski, Juan-Pablo Correa-Baena, Mohammad Khaja Nazeeruddin, Shaik M. Zakeeruddin, Wolfgang Tress, Antonio Abate, Anders Hagfeldt, and Michael Grätzel. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997, 2016.
[56] Michael Saliba, Taisuke Matsui, Konrad Domanski, Ji-Youn Seo, Amita Ummadisingu, Shaik M. Zakeeruddin, Juan-Pablo Correa-Baena, Wolfgang R. Tress, Antonio Abate, Anders Hagfeldt, and Michael Grätzel. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309), 206-209, 2016.
[57] Tingting Liu, Jiahao Guo, Di Lu, Zhiyuan Xu, Qiang Fu, Nan Zheng, Zengqi Xie, Xiangjian Wan, Xiaodan Zhang, Yongsheng Liu, and Yongsheng Chen. Spacer Engineering Using Aromatic Formamidinium in 2D/3D Hybrid Perovskites for Highly Efficient Solar Cells. ACS Nano, 15(4), 7811-7820, 2021.
[58] Xuesong Lin, Danyu Cui, Xinhui Luo, Caiyi Zhang, Qifeng Han, Yanbo Wang, and Liyuan Han. Efficiency progress of inverted perovskite solar cells. Energy & Environmental Science, 13(11), 3823-3847, 2020.
[59] Antonio Abate, Tomas Leijtens, Sandeep Pathak, Joël Teuscher, Roberto Avolio, Maria E. Errico, James Kirkpatrik, James M. Ball, Pablo Docampo, Ian McPherson, and Henry J. Snaith. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 15(7), 2572-2579, 2013.
[60] Zhen Li, Chuanxiao Xiao, Ye Yang, Steven P. Harvey, Dong Hoe Kim, Jeffrey A. Christians, Mengjin Yang, Philip Schulz, Sanjini U. Nanayakkara, Chun-Sheng Jiang, Joseph M. Luther, Joseph J. Berry, Matthew C. Beard, Mowafak M. Al-Jassim, and Kai Zhu. Extrinsic ion migration in perovskite solar cells. Energy & Environmental Science, 10(5), 1234-1242, 2017.
[61] Shen Wang, Mahsa Sina, Pritesh Parikh, Taylor Uekert, Brian Shahbazian, Arun Devaraj, and Ying Shirley Meng. Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. Nano Letters, 16(9), 5594-5600, 2016.
[62] Jeffrey A. Christians, Philip Schulz, Jonathan S. Tinkham, Tracy H. Schloemer, Steven P. Harvey, Bertrand J. Tremolet de Villers, Alan Sellinger, Joseph J. Berry, and Joseph M. Luther. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy, 3(1), 68-74, 2018.
[63] Hao Zhang, Yongzhen Wu, Weiwei Zhang, Erpeng Li, Chao Shen, Huiyun Jiang, He Tian, and Wei-Hong Zhu. Low cost and stable quinoxaline-based hole-transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells. Chemical Science, 9(27), 5919-5928, 2018.
[64] Dmitry Bogachuk, Bowen Yang, Jiajia Suo, David Martineau, Anand Verma, Stephanie Narbey, Miguel Anaya, Kyle Frohna, Tiarnan Doherty, David Müller, Jan P. Herterich, Salma Zouhair, Anders Hagfeldt, Samuel D. Stranks, Uli Würfel, Andreas Hinsch, and Lukas Wagner. Perovskite Solar Cells with Carbon-Based Electrodes – Quantification of Losses and Strategies to Overcome Them. Advanced Energy Materials, 12(10), 2103128, 2022.
[65] Wenjian Shen, Yao Dong, Fuzhi Huang, Yi-Bing Cheng, and Jie Zhong. Interface passivation engineering for hybrid perovskite solar cells. Materials Reports: Energy, 1(4), 100060, 2021.
[66] Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, and Yang Yang. Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546, 2014.
[67] Konrad Wojciechowski, Samuel D. Stranks, Antonio Abate, Golnaz Sadoughi, Aditya Sadhanala, Nikos Kopidakis, Garry Rumbles, Chang-Zhi Li, Richard H. Friend, Alex K. Y. Jen, and Henry J. Snaith. Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano, 8(12), 12701-12709, 2014.
[68] Jun Peng, Yiliang Wu, Wang Ye, Daniel A. Jacobs, Heping Shen, Xiao Fu, Yimao Wan, The Duong, Nandi Wu, Chog Barugkin, Hieu T. Nguyen, Dingyong Zhong, Juntao Li, Teng Lu, Yun Liu, Mark N. Lockrey, Klaus J. Weber, Kylie R. Catchpole, and Thomas P. White. Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy & Environmental Science, 10(8), 1792-1800, 2017.
[69] Fengjiu Yang, Hong En Lim, Feijiu Wang, Masashi Ozaki, Ai Shimazaki, Jiewei Liu, Nur Baizura Mohamed, Keisuke Shinokita, Yuhei Miyauchi, Atsushi Wakamiya, Yasujiro Murata, and Kazunari Matsuda. Roles of Polymer Layer in Enhanced Photovoltaic Performance of Perovskite Solar Cells via Interface Engineering. Advanced Materials Interfaces, 5(3), 1701256, 2018.
[70] Feijiu Wang, Ai Shimazaki, Fengjiu Yang, Kaito Kanahashi, Keiichiro Matsuki, Yuhei Miyauchi, Taishi Takenobu, Atsushi Wakamiya, Yasujiro Murata, and Kazunari Matsuda. Highly Efficient and Stable Perovskite Solar Cells by Interfacial Engineering Using Solution-Processed Polymer Layer. The Journal of Physical Chemistry C, 121(3), 1562-1568, 2017.
[71] Nakita K. Noel, Antonio Abate, Samuel D. Stranks, Elizabeth S. Parrott, Victor M. Burlakov, Alain Goriely, and Henry J. Snaith. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano, 8(10), 9815-9821, 2014.
[72] Tian Yu Wen, Shuang Yang, Peng Fei Liu, Li Juan Tang, Hong Wei Qiao, Xiao Chen, Xiao Hua Yang, Yu Hou, and Hua Gui Yang. Surface Electronic Modification of Perovskite Thin Film with Water-Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics. Advanced Energy Materials, 8(13), 1703143, 2018.
[73] Feng Wang, Wei Geng, Yang Zhou, Hong-Hua Fang, Chuan-Jia Tong, Maria Antonietta Loi, Li-Min Liu, and Ni Zhao. Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells. Advanced Materials, 28(45), 9986-9992, 2016.
[74] Min Kim, Silvia G. Motti, Roberto Sorrentino, and Annamaria Petrozza. Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy & Environmental Science, 11(9), 2609-2619, 2018.
[75] Quanzeng Zhang, Shaobing Xiong, Jazib Ali, Kun Qian, Yu Li, Wei Feng, Hailin Hu, Jingnan Song, and Feng Liu. Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factors of over 82%. Journal of Materials Chemistry C, 8(16), 5467-5475, 2020.
[76] Jun Peng, Jafar I. Khan, Wenzhu Liu, Esma Ugur, The Duong, Yiliang Wu, Heping Shen, Kai Wang, Hoang Dang, Erkan Aydin, Xinbo Yang, Yimao Wan, Klaus J. Weber, Kylie R. Catchpole, Frédéric Laquai, Stefaan De Wolf, and Thomas P. White. A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 8(30), 1801208, 2018.
[77] Guang Yang, Zhiwei Ren, Kuan Liu, Minchao Qin, Wanyuan Deng, Hengkai Zhang, Haibing Wang, Jiwei Liang, Feihong Ye, Qiong Liang, Hang Yin, Yuxuan Chen, Yuanlin Zhuang, Siqi Li, Bowei Gao, Jianbo Wang, Tingting Shi, Xin Wang, Xinhui Lu, Hongbin Wu, Jianhui Hou, Dangyuan Lei, Shu Kong So, Yang Yang, Guojia Fang, and Gang Li. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 15(9), 681-689, 2021.
[78] Cheng Bi, Xiaopeng Zheng, Bo Chen, Haotong Wei, and Jinsong Huang. Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed. ACS Energy Letters, 2(6), 1400-1406, 2017.
[79] Zeguo Tang, Satoshi Uchida, Takeru Bessho, Takumi Kinoshita, Haibin Wang, Fumiyasu Awai, Ryota Jono, Masato M. Maitani, Jotaro Nakazaki, Takaya Kubo, and Hiroshi Segawa. Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance. Nano Energy, 45, 184-192, 2018.
[80] Jixian Xu, Andrei Buin, Alexander H. Ip, Wei Li, Oleksandr Voznyy, Riccardo Comin, Mingjian Yuan, Seokmin Jeon, Zhijun Ning, Jeffrey J. McDowell, Pongsakorn Kanjanaboos, Jon-Paul Sun, Xinzheng Lan, Li Na Quan, Dong Ha Kim, Ian G. Hill, Peter Maksymovych, and Edward H. Sargent. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications, 6(1), 7081, 2015.
[81] Chong Liu, Wenzhe Li, Hongliang Li, Cuiling Zhang, Jiandong Fan, and Yaohua Mai. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency. Nanoscale, 9(37), 13967-13975, 2017.
[82] Dongqin Bi, Chenyi Yi, Jingshan Luo, Jean-David Décoppet, Fei Zhang, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt, and Michael Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 1(10), 16142, 2016.
[83] Jin-Wook Lee, Sang-Hoon Bae, Yao-Tsung Hsieh, Nicholas De Marco, Mingkui Wang, Pengyu Sun, and Yang Yang. A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells. Chem, 3(2), 290-302, 2017.
[84] Tianqi Niu, Jing Lu, Rahim Munir, Jianbo Li, Dounya Barrit, Xu Zhang, Hanlin Hu, Zhou Yang, Aram Amassian, Kui Zhao, and Shengzhong Liu. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials, 30(16), 1706576, 2018.
[85] Rui Wang, Jingjing Xue, Lei Meng, Jin-Wook Lee, Zipeng Zhao, Pengyu Sun, Le Cai, Tianyi Huang, Zhengxu Wang, Zhao-Kui Wang, Yu Duan, Jonathan Lee Yang, Shaun Tan, Yonghai Yuan, Yu Huang, and Yang Yang. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule, 3(6), 1464-1477, 2019.
[86] Rui Wang, Jingjing Xue, Kai-Li Wang, Zhao-Kui Wang, Yanqi Luo, David Fenning, Guangwei Xu, Selbi Nuryyeva, Tianyi Huang, Yepin Zhao, Jonathan Lee Yang, Jiahui Zhu, Minhuan Wang, Shaun Tan, Ilhan Yavuz, Kendall N. Houk, and Yang Yang. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366(6472), 1509-1513, 2019.
[87] Chengbin Fei, Bo Li, Rong Zhang, Haoyu Fu, Jianjun Tian, and Guozhong Cao. Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film. Advanced Energy Materials, 7(9), 1602017, 2017.
[88] Tianhao Wu, Yanbo Wang, Xing Li, Yongzhen Wu, Xiangyue Meng, Danyu Cui, Xudong Yang, and Liyuan Han. Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donor-π-Acceptor Molecules. Advanced Energy Materials, 9(17), 1803766, 2019.
[89] Fei Zhang, Dongqin Bi, Norman Pellet, Chuanxiao Xiao, Zhen Li, Joseph J. Berry, Shaik Mohammed Zakeeruddin, Kai Zhu, and Michael Grätzel. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy & Environmental Science, 11(12), 3480-3490, 2018.
[90] Lijian Zuo, Hexia Guo, Dane W. deQuilettes, Sarthak Jariwala, Nicholas De Marco, Shiqi Dong, Ryan DeBlock, David S. Ginger, Bruce Dunn, Mingkui Wang, and Yang Yang. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 3(8), e1700106.
[91] Ya-Han Wu, Xiao-Qiang Shi, Xi-Hong Ding, Ying-Ke Ren, Tasawar Hayat, Ahmed Alsaedi, Yong Ding, Pan Xu, and Song-Yuan Dai. Incorporating 4-tert-Butylpyridine in an Antisolvent: A Facile Approach to Obtain Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 10(4), 3602-3608, 2018.
[92] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng, and Jinsong Huang. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances, 5(3), eaav8925.
[93] Jing Zhang, Wensheng Liang, Wei Yu, Shuwen Yu, Yiliang Wu, Xin Guo, Shengzhong Liu, and Can Li. A Two-Stage Annealing Strategy for Crystallization Control of CH3NH3PbI3 Films toward Highly Reproducible Perovskite Solar Cells. Small, 14(26), 1800181, 2018.
[94] Zhen Song, Jiang Liu, Gang Wang, Wentao Zuo, Cheng Liao, and Jun Mei. Understanding the Photovoltaic Performance of Perovskite–Spirobifluorene Solar Cells. ChemPhysChem, 18(21), 3030-3038, 2017.
[95] Dietrich Meyerhofer. Characteristics of resist films produced by spinning. Journal of Applied Physics, 49(7), 3993-3997, 1978.
[96] Yuguo Tao, Screen‐Printed Front Junction n‐Type Silicon Solar Cells. 2016. p. 47-73.
[97] Masashi Ozaki, Yasuhisa Ishikura, Minh Anh Truong, Jiewei Liu, Iku Okada, Taro Tanabe, Shun Sekimoto, Tsutomu Ohtsuki, Yasujiro Murata, Richard Murdey, and Atsushi Wakamiya. Iodine-rich mixed composition perovskites optimised for tin(iv) oxide transport layers: the influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance. Journal of Materials Chemistry A, 7(28), 16947-16953, 2019.
[98] Qing Zhu, Zijian Wang, Xinwei Cai, Weiping Wang, Gaozhu Wu, Lijing Kong, Xuanli Zheng, Yiyan Cao, Yaping Wu, Xu Li, Zhiming Wu, and Junyong Kang. Enhanced carrier separation efficiency and performance in planar-structure perovskite solar cells through an interfacial modifying layer of ultrathin mesoporous TiO2. Journal of Power Sources, 465, 228251, 2020.
[99] Pengchen Zhu, Shuai Gu, Xin Luo, Yuan Gao, Songlin Li, Jia Zhu, and Hairen Tan. Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2-KCl Composite Electron Transport Layer. Advanced Energy Materials, 10(3), 1903083, 2020.
[100] Juntian Zhou, Mei Lyu, Jun Zhu, Guannan Li, Yitong Li, Suzhe Jin, Jialei Song, Haihong Niu, Jinzhang Xu, and Ru Zhou. SnO2 Quantum Dot-Modified Mesoporous TiO2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 5(3), 3052-3063, 2022.
[101] Wenmei Ming, Dongwen Yang, Tianshu Li, Lijun Zhang, and Mao-Hua Du. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode. Advanced Science, 5(2), 1700662, 2018.
[102] Sebastian Svanström, T. Jesper Jacobsson, Gerrit Boschloo, Erik M. J. Johansson, Håkan Rensmo, and Ute B. Cappel. Degradation Mechanism of Silver Metal Deposited on Lead Halide Perovskites. ACS Applied Materials & Interfaces, 12(6), 7212-7221, 2020.
[103] Cris Angelo M. Pagtalunan, Florentino C. SumeraPh.D., and Marlon T. ConatoPh.D. Synthesis and characterization of 12-aminolauric acid-modified montmorillonite for catalytic application. AIP Conference Proceedings, 1958(1), 020021, 2018.
[104] Weibo Kong, Xiaowei Fu, Ye Yuan, Zhimeng Liu, and Jingxin Lei. Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling. RSC Advances, 7(47), 29554-29562, 2017.
[105] Dingchao He, Zhiqian Yang, Dufeng Li, Yuanjuan Niu, and Linhua Hu. Dodecylamine assisted perovskite growth for high-performance perovskite solar cells with low defect density. Materials Letters, 309, 131365, 2022.
[106] Wolfgang Tress, Juan Pablo Correa Baena, Michael Saliba, Antonio Abate, and Michael Graetzel. Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination. Advanced Energy Materials, 6(19), 1600396, 2016.
[107] Ricky B. Dunbar, Benjamin C. Duck, Tom Moriarty, Kenrick F. Anderson, Noel W Duffy, Christopher J. Fell, Jincheol Kim, Anita Ho-Baillie, Doojin Vak, The Duong, YiLiang Wu, Klaus Weber, Alex Pascoe, Yi-Bing Cheng, Qianqian Lin, Paul L. Burn, Ripon Bhattacharjee, Hongxia Wang, and Gregory J. Wilson. How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 5(43), 22542-22558, 2017.
[108] Wenjing Zhao, Jie Xu, Kun He, Yuan Cai, Yu Han, Shaomin Yang, Sheng Zhan, Dapeng Wang, Zhike Liu, and Shengzhong Liu. A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23%. Nano-Micro Letters, 13(1), 169, 2021.
[109] Juncong Li, Xiaofei Dong, Tong Liu, Hongli Liu, Shirong Wang, and Xianggao Li. Electronic Coordination Effect of the Regulator on Perovskite Crystal Growth and Its High-Performance Solar Cells. ACS Applied Materials & Interfaces, 12(17), 19439-19446, 2020.
[110] Tingting Xu, Kai Zou, Shaoshen Lv, Hebing Tang, Yingxiang Zhang, Yonghua Chen, Lixin Chen, Zhen Li, and Wei Huang. Efficient and Stable Carbon-Based Perovskite Solar Cells via Passivation by a Multifunctional Hydrophobic Molecule with Bidentate Anchors. ACS Applied Materials & Interfaces, 13(14), 16485-16497, 2021.
[111] M. A. Lampert. Volume-controlled current injection in insulators. Reports on Progress in Physics, 27(1), 329, 1964.
[112] Peter Mark and Wolfgang Helfrich. Space‐Charge‐Limited Currents in Organic Crystals. Journal of Applied Physics, 33(1), 205-215, 1962.
[113] Murray A Lampert and Peter Mark, Current injection in solids. 1970: Academic press.
[114] Mas Hafizah, Ahmad Riyadi, Azwar Manaf, and Andreas. Particle Size Reduction of Polyaniline Assisted by Anionic Emulsifier of Sodium Dodecyl Sulphate (SDS) Through Emulsion Polymerization. IOP Conference Series: Materials Science and Engineering, 515, 012080, 2019.
[115] Yepin Zhao, Ilhan Yavuz, Minhuan Wang, Marc H. Weber, Mingjie Xu, Joo-Hong Lee, Shaun Tan, Tianyi Huang, Dong Meng, Rui Wang, Jingjing Xue, Sung-Joon Lee, Sang-Hoon Bae, Anni Zhang, Seung-Gu Choi, Yanfeng Yin, Jin Liu, Tae-Hee Han, Yantao Shi, Hongru Ma, Wenxin Yang, Qiyu Xing, Yifan Zhou, Pengju Shi, Sisi Wang, Elizabeth Zhang, Jiming Bian, Xiaoqing Pan, Nam-Gyu Park, Jin-Wook Lee, and Yang Yang. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nature Materials, 21(12), 1396-1402, 2022.