簡易檢索 / 詳目顯示

研究生: 詹欣澤
Zhan, Xin-Ze
論文名稱: 奈米氧化鎳應用於有機太陽能電池之研究
Applications of NiOx Nanoparticles to Organic Solar Cells
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 有機太陽能電池氧化鎳薄膜紫外光臭氧元件壽命
外文關鍵詞: Organic solar cells, Nickel oxide film, UV-Ozone, Lifetime
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,將聚(3-己烷基噻吩): [6,6]-苯基碳61丁酸甲酯(P3HT:PCBM)有機太陽能元件結合溶液製程的氧化鎳薄膜介面層,增強太陽光電池元件的效率及元件生命。
    透過動態光散射儀(DLS)、解析場發射掃瞄式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、高解析X光光電子能譜儀(HRXPS)......等量測設備量測,討論氫氧化鎳顆粒大小、薄膜厚度、表面形態、成分組成、主動層厚度、退火溫度、電極改良是如何影響太陽光電池元件效率,並使用氧化鎳薄膜和PEDOT:PSS為電洞傳輸層的有機太陽能電池效率以及壽命的比較,發現使用氧化鎳薄膜的太陽光電池元件不僅效率表現比較優異,壽命也比PEDOT:PSS的元件還要來的長。
    研究發現UV-Ozone對氧化鎳薄膜進行表面處理,會使得薄膜內Ni2+和Ni3+比例產生改變,這結果不僅讓氧化鎳薄膜產生顏色上的變化,增加了光吸收,還提升了薄膜導電度,在提升元件效率上扮演了重要的角色。

    In this study, we report the fabrication of poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester (P3HT:PCBM) OPV devices incorporating solution-based NiO interfacial layers that show promising enhancements of the device energy conversion efficiency (PCE) and lifetime.
    We analyzed the size of nickel hydroxide particles, the film thickness, the surface morphology and the composition of nickel hydroxide layer By DLS, SEM , AFM, and HRXPS. The effects of the thickness of active layer, annealing temperature and the improvement of electrode on the efficiency of solar cell devices were discussed. We also compared the efficiency and lifetime of solar cell with different hole transporting layers. We conclude that the device with NiOx layer had higher efficiency and longer lifetime than the device with PEDOT:PSS .
    In summary, the UV-ozone treatment causes the variation of the composition between Ni+2 and Ni+3. This consequence not only changes the color of NiOx thin-film, but rises the conductivity and optical absorption of the film. In conclusion, UV-Ozone plays an important role on the improvement of the efficiency of photovoltaic device.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2有機太陽能電池發展 2 1-3電子電洞阻擋層 3 1-4 氧化物半導體材料 4 1-4-1 金屬氧化物 4 1-4-2 P型金屬氧化物材料 5 1-4-2 氧化鎳薄膜 6 1-5 研究動機 7 第二章 理論基礎 8 2-1共軛性導電高分子材料 8 2-2有機太陽能電池工作原理 9 2-2-1光吸收(Light absorption)與激子(Exciton)的形成 9 2-2-2激子擴散(Exciton diffusion) 10 2-2-3電荷分離(Charge separation) 10 2-2-4電荷收集(Change collection) 10 2-3有機太陽能電池的特性分析 10 2-3-1開路電壓 11 2-3-2短路電流 12 2-3-3填充因子 12 2-3-4 能量轉換效率(Power conversion efficiency,PCE) 14 2-4溶膠-凝膠法(Sol-gel) 14 2-4-1 溶膠-凝膠法簡介 14 2-4-2 溶膠-凝膠法原理 15 2-4-2-1 水解、聚合 16 2-4-2-2 水解率 17 第三章 實驗步驟與儀器量測 19 3-1溶膠-凝膠法製程Ni(OH)2奈米顆粒 20 3-1-1溶膠製備 20 3-1-2溶液配製 20 3-2黃光蝕刻 22 3-2-1 清潔ITO玻璃 22 3-2-2 黃光微影與蝕刻 22 3-3元件製作 23 3-3-1試片清潔 23 3-3-2塗佈電洞傳輸層 24 3-3-2-1 塗佈氧化鎳奈米薄膜 24 3-3-2-2 塗佈PEDOT:PSS 24 3-3-3主動層溶液的製備與塗佈 25 3-3-4 主動層退火 25 3-3-5 蒸鍍陰極金屬 25 3-3-5-1 熱蒸鍍原理 (Thermal Evaporation) 25 3-3-5-2 熱蒸鍍金屬 27 3-4分析量測 28 3-4-1 動態光散射儀 (DLS) 28 3-4-2高解析場發射掃瞄式電子顯微鏡(HR FE-SEM) 29 3-4-3 多功能原子力顯微鏡(AFM) 31 3-4-4 高解析X光光電子能譜儀(HRXPS) 32 3-4-5 效率量測設備 33 第四章 結果與討論 34 4-1 氧化鎳薄膜特性與量測 34 4-1-1 氧化鎳薄膜製作與參數 34 4-1-2 溶膠-凝膠溶液粒徑分析 35 4-1-3 膜厚與表面形態 36 4-1-4 氧化鎳薄膜成分析 39 4-1-5 總結 42 4-2 有機太陽能電池元件優化與比較 42 4-2-1 主動層厚度選擇 43 4-2-2不同膜厚對太陽光電池元件效率的影響 44 4-2-3 優化元件開路電壓 47 4-2-4 元件退火優化 50 4-2-5 元件穩定度比較 53 4-2-6 總結 58 4-3 UV-Ozone處理對元件的影響 58 4-3-1 UV-Ozone表面處理對元件退火的影響 58 4-3-2 UV-Ozone表面處理對不同基板製程溫度的影響 64 4-3-3 UV-Ozone表面處理對氧化鎳薄膜的影響 69 4-3-4 總結 75 第五章 結論與未來規劃 76 5-1 結論 76 5-2未來規劃 78 參考文獻 79

    [1] 楊昌中, “能源危機與永續發展”, 工業技術研究院 (2012)。
    [2] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett., 90, 183516 (2007).
    [3] Amal K. Ghosh and T. Feng, “Merocyanine organic solar cells,” J. Appl. Phys., 49, 5982 (1978).
    [4] C. W. Tang, ” Twolayer organic photovoltaic cell,” Appl. Phys. Lett., 48, 183 (1986).
    [5] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene,” Science, 258 , 1474-1476 (1992).
    [6] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl , ” Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices,” Synthetic Metals, 59, 333-352 (1993).
    [7] P. Peumans, V. Bulović, and S. R. Forrest,“Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett., 76, 2650 (2000).
    [8] S. E. Shaheen, C. J. Brabec, N. S Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen ,” 2.5% efficient organic plastic solar cells,” Appl. Phys. Lett., 78, 841 (2001).
    [9] G. W. Hwang, “Introduction to Conjugated Conducting Polymer Technology,” 工業材料雜誌288 期。
    [10] K. X. Steirer, P. F. Ndione, N. E. Widjonarko, M. T. Lloyd, J. Meyer, E. L. Ratcliff, A. Kahn, N. R. Armstrong, C. J. Curtis, D. S. Ginley, J. J. Berry, D. C. Olson, ” Enhanced Effi ciency in Plastic Solar Cells via Energy Matched Solution Processed NiO x Interlayers,” Adv. Energy Mater., 1, 813-820 ( 2011).
    [11] K. Kawanoa, R. Paciosc, D. Poplavskyyc, J. Nelsonc, D. D.C. Bradleyc, J. R. Durrantb, ” Degradation of organic solar cells due to air exposure,”Solar Energy Materials & Solar Cells, 90, 3520-3530 (2006).
    [12] K. X. Steirer, P. F. Ndione, N. E. Widjonarko, M. T. Lloyd, J. Meyer, E. L. Ratcliff, A. Kahn, N. R. Armstrong, C. J. Curtis, D. S. Ginley, J. J. Berry, D. C. Olson, ” Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiO x Interlayers,” Advanced Energy Materials, Volume 1, Issue 5, pages 813–820 (2011).
    [13] R. Steim,F. R. Koglera and C. J. Brabeccd, ” Interface materials for organic solar cells,” J. Mater. Chem., 20, 2499-2512 (2010).
    [14] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang , and T. J. Marks, ” p-Type semiconducting nickel oxide as an efficiency enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” PNAS, 105 , 2783-2787 ( 2008).
    [15] K. X. Steirera, J. P. Chesinc, N. E. Widjonarkod, J. J. Berryb, D. S. Ginleyb, D. C. Olsonb, “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Organic Electronics, 11, 1414-1418 (2010).
    [16] K. Hai Wonga, K. Ananthanarayanana, M. D. Heinemanna, J. Luthera, P. Balayaa, “Enhanced photocurrent and stability of organic solar cells using solution-based NiO interfacial layer,” Solar Energy , 86, 3190-3195 (2012) .
    [17] M. S. Ryu, J. Jang, ” Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic,” Solar Energy Materials & Solar Cells , 95, 2893-2896 (2011).
    [18] O. J. Berry, N. E. Widjonarko, B. A. Bailey, A. K. Sigdel, D. S. Ginley, and D. C. Olson, ” Surface Treatment of NiO Hole Transport Layers for Organic Solar Cells,” IEEE journal of selected topics in quantum electronics, 16, 1649-1655 (2010).
    [19] 陳志平,”高分子有機太陽能電池技術發展概況”,工業材料雜誌,262期,2008。
    [20] B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry ,”McMillan Co.New York (1962).
    [21] 謝坤龍,“釟銀合金/氧化鋁複合膜之特性研究:以溶膠凝膠法修是基材孔徑之探討”,國立成功大學化學工程研究所碩士論文 (2000)。
    [22] B. Orel, U. L. Štankgara, Z. C. Orela, P. Bukovecb, M. Kosecc,” Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2: Sb powders and dip-coated films prepared via inorganic sol-gel route,” Journal of Non-Crystalline Solids, 167, 3 , 272–288 (1994).
    [23] 張天益,“ 利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究”, 國立成功大學材料科學及工程學系博士論文 (2007)。
    [24] M. Henry, et al. , “Ultrastructure Processing of Advanced Materials,” Uhlmann, D. R.; Ulrich, D. R. Eds.; Wiley: New York, (1992)。
    [25] 蔡裕榮、周禮君,“以溶膠凝膠法製備透明導電氧化物薄膜的探討”, Chemistry (THE CHINESE CHEM. SOC., TAIPEI), 60, 3, 307-318 (2002).
    [26] C. J. Brinker, G. W. Scherer.,” Sol-gel chemistry from metal alkoxide precursors,” J. New J. Chem., 14, 513 (1990).
    [27] Y. Z. Tsai, L. K. Chau,” Sol-Gel-Derived Transparent Conducting Oxide Films,” CHEMISTRY (the chinese chem. soc., taipei), 60, 3, 307-318 (2002).
    [28] J. Cheng,G. P. Cao, Y. S. Yang, ” Characterization of sol–gel-derived NiOx xerogels as supercapacitors,” Journal of Power Sources, 159, 1, 734-741 (2006).
    [29] L. Zeng, C. W. Tang, and S. H. Chen ,” Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices,” Appl. Phys. Lett., 97, 053305 (2010).
    [30] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec,” Design rules for donors in bulk‐heterojunction solar cells-Towards 10% energy‐conversion efficiency,” Advanced Materials, 18, 6, 789-794 (2006).
    [31] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, ” Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett., 80, 1288 (2002).
    [32] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang,” Solvent Annealing Effect in Polymer Solar Cells Based on Poly (3-hexylthiophene) and Methanofullerenes,” Advanced Functional Materials, 17, 10, 1636-1644 (2007).
    [33] L. Fan, Z. Jie, Y. Kai, C. Yiwang, ” Origin of the efficiency improvement in pre-annealed P3HT/PCBM solar cells with LiF/Al electrodes,” Chemical Physics Letters, 553, 36-40 (2012).
    [34] A. Lange, M. Wegenera, C. Boeffela, B. Fischera, A. Wedela, D. Neherb, “A new approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices with printed passive and active layers,” Solar Energy Materials and Solar Cells, 94, 10, 1816-1821 (2010).
    [35] L. Zeng, C. W. Tang, and S. H. Chen, “Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices,” Appl. Phys. Lett., 97, 053305 (2010)
    [36] Y. Kim, S. A. Choulis, J. Nelson, D.D. C. Bradley, S. Cook and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett., 86, 063502 (2005).
    [37] S.R Jiang, P. X. Yan, B.X Feng, X. M. Cai, J. Wang,” The response of a NiOx thin film to a step potential and its electrochromic mechanism,” Materials Chemistry and Physics, 77, 2, 384-389 (2003).
    [38] A. Gorenstein, F. Decker,W. Estrada, C. Esteves ,A. Andersson,” Electrochromic NiOxHy, hydrated films: cyclic voltammetry and ac impedance spectroscopy in aqueous electrolyte,” J. Electroanal. Chem., 277, 1 , 277-290 (1990).

    無法下載圖示 校內:2018-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE