簡易檢索 / 詳目顯示

研究生: 鄭皓元
Zheng, Hao-Yuan
論文名稱: 應用於十位元源極驅動電路之設計
10-bit Source Driver Circuits Design for TFT-LCD
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 源極驅動器輸出緩衝器點反轉
外文關鍵詞: dot inversion, output buffer, source driver
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高解析度的液晶顯示源極驅動電路面臨到數位類比轉換器面積過大和輸出緩衝器偏移電壓等問題,因此本論文提出了一應用於十位元液晶顯示源極驅動電路之低面積數位類比轉換器以及一具有低偏移電壓之輸出緩衝器。
    十位元數位類比轉換器採用了電阻串-電容兩級式的架構,相較於傳統的單級電阻串架構,有較小的佈局面積。輸出緩衝器採用了改良自傳統CLASS-A兩級式放大器的架構,由於傳統CLASS-A兩級式放大器依據其輸入差動對的形式(PMOS或NMOS),其輸出級僅具有充電或放電能力,不適用於較低功率的驅動模式(如2-dot 反轉模式),因此本論文利用一個電流正回授的路徑改善傳統CLASS-A兩級式放大器輸出級的充電(放電)能力,使其適用於低功率的操作模式;在輸出緩衝器偏移電壓部份,採用了平均偏移電壓的方式,利用數個開關以及一個控制訊號,週期性的改變偏移電壓的極性,使偏移電壓於緩衝器輸出端呈現平均的效果,此法不需要額外的儲存電容,相當的節省成本。
    採用TSMC 0.35μm 2P4M CMOS製程下線,整體晶片面積為1704 x 262 μm2。量測的輸出緩衝器穩定時間均小於7.8μs,平均後的最大偏移電壓為0.57LSB,最大的DNL和INL分別為3.09LSB和5.69LSB。

    The area of a DAC and the offset of a buffer are the main issues to be resolved for high resolution source drivers. In this thesis, area-efficient R-C DACs with low-offset push-pull output buffers for a 10-bit source driver are proposed.
    The 10-bit R-C DAC adopts a two-stage structure, which composes of a R-string and a weighted capacitor array. Comparing to a conventional 10-bit R DAC, the 10-bit R-C DAC has a smaller area. The output buffer adopts a modified opamp, based on a conventional two-stage Class-A opamp. A conventional Class-A opamp only has a charge or a discharge ability according to its type of input differential pair so it is not suitable for a low power driving mode (e.g. two-dot inversion). Therefore, a positive current feedback path is used to improve the insufficient charge (discharge) ability of a conventional two-stage Class-A opamp so that it is suitable for a low power driving mode. An offset averaging method is used for the offset of the output buffer. By using several switches and a control signal, the polarity of the offset is reversed periodically so the offset is averaged at the output of the output buffer. The offset averaging method needs no extra capacitors so it is cost-effective.
    The chip is fabricated using the TSMC 0.35μm 2P4M CMOS process and its area is 1704 x 262 μm2. The measured settling time of the output buffer is under 7.8μs. The maximum offset after averaging is 0.57LSB. The maximum DNL and INL are 3.09LSB and 5.69LSB respectively.

    第一章 緒論 1 1.1 背景與動機 1 1.2 相關研究發展 1 1.3 研究目標與方法 3 1.4 論文架構簡介 4 第二章 薄膜電晶體液晶顯示驅動原理 5 2.1 液晶顯示器簡介 5 2.1.1 液晶(Liquid Crystal)起源 5 2.1.2 液晶顯示器種類 6 2.1.3 液晶顯示器驅動原理 7 2.1.4 極性反轉 9 2.1.5 反轉方法 10 2.1.6 Gamma校正 15 2.2 TFT-LCD之基本系統架構與動作原理 15 2.3 閘極驅動電路之基本架構 19 2.4 源極驅動電路之基本架構 20 2.5 數位類比轉換器(DIGITAL TO ANALOG CONVERTER) 22 2.5.1 電壓式數位類比轉換器(Voltage-Mode DAC) 22 2.5.2 電荷式數位類比轉換器(Charge-Mode DAC) 25 2.5.3 電阻串-電荷分享數位類比轉換器 26 2.6 輸出緩衝器 27 第三章 源極驅動電路後端類比電路規格與設計考量 32 3.1 數位類比轉換器 32 3.1.1 偏移誤差(Offset error) 32 3.1.2 增益誤差(Gain error) 33 3.1.3 差分非線性誤差(DNL, differential non-linearity error) 34 3.1.4 積分非線性誤差(INL, Integral non-linearity error) 35 3.1.5 單調性(monotonic) 36 3.2 採樣開關 37 3.2.1 開關非理想效應 37 3.2.2 通道電荷注入抵消之方式 39 3.3 輸出緩衝器 41 3.3.1 高速驅動及穩定時間考量 41 3.3.2 小的晶片面積 42 3.3.3 足夠的解析度 42 3.3.4 輸出緩衝器輸入級架構考量 43 3.4 系統規格 44 第四章 源極驅動電路後端類比電路的設計、模擬與佈局 46 4.1 源極驅動電路後端類比電路 46 4.2 十位元數位類比轉換器 47 4.2.1 七位元電阻串數位類比轉換器 47 4.2.2 三位元電荷分享數位類比轉換器 49 4.2.3 非重疊相位產生電路 51 4.3 電位移轉器 52 4.4 輸出緩衝器 53 4.5 偏壓電路 63 4.6 平均偏移電壓電路 64 4.7 佈局 68 4.8 整體電路之POST-LAYOUT模擬 69 4.8.1 DAC靜態規格模擬 69 4.8.2 One-dot反轉法之模擬 71 4.8.3 Two-dot反轉法之模擬 73 第五章 量測結果 74 5.1 晶片接腳說明 74 5.2 量測結果 76 5.2.1 One-dot與two-dot反轉法之量測 76 5.2.2 輸出緩衝器偏移電壓之量測 78 5.2.3 DAC靜態規格之量測 79 5.3 量測總結 81 第六章 結論 83 6.1 總結與貢獻 83 6.2 未來研究方向 83 參考文獻 84 附錄 86

    [1] K. Jin-Ho, C. Byong-Deok, and K. Oh-Kyong, "1-billion-color TFT LCD TV with full HD format," Consumer Electronics, IEEE Transactions on, vol. 51, pp. 1042-1050, 2005.
    [2] Y.-C. Sung, S.-M. So, J.-K. Kim, and O.-K. Kwon, "10bit Source Driver with Resistor-Resistor-String Digital to Analog Converter," in SID Symposium Digest of Technical Papers. vol. 36: SID, 2005, pp. 1099-1101.
    [3] L. Chih-Wen and H. Lung-Chien, "A 10-Bit LCD Column Driver With Piecewise Linear Digital-to-Analog Converters," Solid-State Circuits, IEEE Journal of, vol. 43, pp. 371-378, 2008.
    [4] M. J. Bell, "An LCD column driver using a switch capacitor DAC," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 2756-2765, 2005.
    [5] S. Young-Suk, K. Ji-Hun, C. Hyun-Ho, H. Ju-Pyo, N. Joon-Ho, K. Dae-Seong, H. Dae-Keun, H. Jin-Cheol, J. Yong-Joon, and C. Gyu-Hyeong, "A Column Driver with Low-Power Area-Efficient Push-Pull Buffer Amplifiers for Active-Matrix LCDs," in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, 2007, pp. 142-143.
    [6] T. Itakura, H. Minamizaki, T. Saito, and T. Kuroda, "A 402-output TFT-LCD driver IC with power control based on the number of colors selected," Solid-State Circuits, IEEE Journal of, vol. 38, pp. 503-510, 2003.
    [7] 電子工程專輯, STN-LCD 彩色螢幕模組設計, 2004.
    [8] 戴亞翔, TFT-LCD面板的驅動與設計: 五南圖書出版公司, 2006.
    [9] R. Gregorian, Introduction to CMOS OP-AMPs and Comparators: John Wiley & Sons, Inc, 1999.
    [10] L. Chih-Wen and H. Kuo-Jen, "A high-speed low-power rail-to-rail column driver for AMLCD application," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 1313-1320, 2004.
    [11] Y. Pang-Cheng and W. Jiin-Chuan, "A class-B output buffer for flat-panel-display column driver," Solid-State Circuits, IEEE Journal of, vol. 34, pp. 116-119, 1999.
    [12] C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," Proceedings of the IEEE, vol. 84, pp. 1584-1614, 1996.
    [13] G. Wegmann, E. A. Vittoz, and F. Rahali, "Charge injection in analog MOS switches," Solid-State Circuits, IEEE Journal of, vol. 22, pp. 1091-1097, 1987.
    [14] B. Razavi, Design of Analog CMOS Integrated Circuits: Mc Graw Hill, 2001.
    [15] A. Hastings and R. A. Hastings, The Art Of Analog Layout: Prentice Hall, 2000.
    [16] J.-H. Wang, H.-Y. Zheng, C.-H. Tsai, C.-T. Chang, and C.-C. Lee, "A Compact Rail-to-Rail Buffer with Current Positive-Feedback for LCD Source Driver," in VLSI Design, Automation and Test, 2009. VLSI-DAT 2009. IEEE International Symposium on, 2009.
    [17] P. E. A. a. D. R. Holberg, CMOS Analog Circuit Design: Oxford University, 2002.

    無法下載圖示 校內:2109-01-16公開
    校外:2109-01-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE