| 研究生: |
李奇璋 Lee, Chi-Jhung |
|---|---|
| 論文名稱: |
砷化鎵系列雙極性-場效電晶體之研製 Fabrication of GaAs-Based Bipolar-Field-Effect Transistors (BiFETs) |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 異質接面雙極性電晶體 、雙極性-場效電晶體 、感測 、高電子移動率電晶體 |
| 外文關鍵詞: | BiFET, HBT, HEMT, sensor |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑒於III-V族系列材料具有高速和微波特性,以砷化鎵系列為主之異質接面雙極性電晶體和高電子移動率電晶體在積體電路應用上皆已蓬勃發展,而進一步地將兩元件整合將有助於積體電路的成本掌控和增加電路設計的靈活性。
本論文中,我們利用低壓有機金屬化學氣相沈積法成長及研製出以砷化鎵系列為主的雙極性-場效電晶體,設計內容包括光罩佈局、製程步驟、蝕刻溶液配方和沈積金屬等等。本文探討部分製程參數不同時,對於元件特性的影響,並選出元件最佳化參數。
在元件完成之後,在不同溫度下的電性量測,包含77K到450K之間,可明顯看出高溫和低溫量測出的特性趨勢並非完全一致,在異質接面雙極性電晶體特性之探討包含電流增益、補償電壓、基極-射極和基極-集極二極體的導通和崩潰電壓。而在高載子移動率電晶體方面包含電壓增益、臨界電壓、轉導和閘極-源極二極體的導通電壓和閘極漏電流亦加以探討。在溫度的變化下,其中影響的因素和機制會使特性呈現正和負溫度相依性。
Due to excellent high-speed and microwave performance, the fabrication technologies of GaAs-based heterojunction bipolar transistors and high electron mobility transistors have been progressed rapidly over the past years. Modern application requirements and size limitations cause the integration of these two kinds of devices. This gives the additional freedom in the design of advanced power amplifiers and low cost integrated circuit.
In this thesis, we focus on the fabrication of heterojunction bipolar transistors and high electron mobility transistors on the same substrate and discussion of the device characteristics. We process that merged GaAs-based heterojunction bipolar transistors with high electron mobility transistors in the collector layers. To integrate high electron mobility transistors into the collector, the channel of high electron mobility transistors is placed below the highly conductive sub-collector. On the other hand, we also investigated and demonstrated the temperature-dependent characteristics of GaAs-based bipolar-field-effect transistors at the high temperature and low temperature. Temperature-dependent two-and three-terminal measurements suggest that different mechanisms dominate device characteristics trends at different temperature regimes.
[1] C. R. Bolognesi, N. Matine, M. W. Dvorak, X.G. Xu, J. Hu, and S. P. Watkins, “Non-blocking collector InP/GaAs0.51Sb0.49/InP double heterojunction bipolar transistors with a staggered lineup base-collector junction,” IEEE Electron Device Lett., vol. 20, pp. 155-157, 1999.
[2] P. C. Chang, A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou, and E. Armour, “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 76, pp. 2262-2264, 2000.
[3] Y. M. Kim, Z. Griffith, M. J. W. Rodwell, and A. C. Gossard, “High bandwidth and low-leakage Current InP-In0.53Ga0.47As-InP DBHTs on GaAs Substrates,” IEEE Electron Device Lett., vol. 25, pp. 170-172, 2004.
[4] S. H. Chen, S. Y. Wang, R. J. Hsieh, and J. I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 28, pp. 679-681, 2007.
[5] P. C. Chao, P. M. Smith, K. H. G. Duh, and J. C. M. Hwang, “60-GHz GaAs low-noise MESFET’s by molecular-beam epitaxy,” IEEE Trans. Electron Devices, vol. 33, pp. 1852-1857, 1986.
[6] Y. Hori, M. Kuzuhara, Y. Ando, and M. Mizuta, “Analysis of electric field distribution in GaAs metal-semiconductor field effect transistor with a field-modulating plate,” J. Appl. Phys., vol. 87, pp. 3483-3487, 2000.
[7] S. Nakajima, M. Yanagisawa, E. Tsumura, and T. Sakurada, “On the frequency dependent drain conductance of ion-implanted GaAs MESFETs,” IEEE Trans. Electron Devices, vol. 47, pp. 2255-2260, 2000.
[8] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Thechnol., vol. 18, pp. 319-324, 2003.
[9] P. Win, Y. Druelle, and A. Cappy, ”Metamorphic AlInAs/InGaAs layers on GaAs: A new structure for high-performance high electron mobility transistor realization,” Appl. Phys. Lett., vol. 61, pp. 922-924, 1992.
[10] J. C. Huang, G. S. Jackson, S. Shanfield, A. Platzker, P. K. Saledas, and C. Weichert, “An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for X and Ku-Band power applications,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 752-759, 1993.
[11] K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High-performance InP-based enhancement-mode HEMTs using nonalloyed Ohmic contacts and Pt-buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, pp. 252-257, 1996.
[12] A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “0.3 μm gate length enhancement-mode AlInAs/InGaAa/InP high-electron mobility transistor,” IEEE Electron Device Lett., vol. 18, pp. 284-286, 1997.
[13] Y. Cordier, S. Bollaert, J. Dipersio, D. Ferre, S. Trudel, Y. Druelle, and A. Cappy, “MBE grown InAlAs/InGaAs lattice mismatched layers for HEMT application on GaAs substrate,” Appl. Surf. Sci., vol. 123/124, pp. 734-737, 1998.
[14] M. Zaknoune, B. Bonte, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/GaInAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, pp.345-347, 1998.
[15] K. Eisenbeiser, R. Droopad, and J.-H. Huang, “Metamorphic InAlAs/GaInAs enhancement mode HEMTs on GaAs substrate,” IEEE Electron Device Lett., vol. 20, pp. 507-509, 1999.
[16] Y. Luo, Y. Nakano, K. Tada, T. Inoue, H. Hosomatsu, and H. Iwaoka, “Purely gain-coupled distributed feedback semiconductor laser,” Appl. Phys. Lett., vol. 56, pp. 1620-1622, 1990.
[17] T. M. Cockerill, J. Honig, D. V. Forbes, and J. J. Coleman, “Distributed feedback strained layer quantum well heterostructure 980 nm laser fabricated by two-step metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 62, pp. 820-822, 1993.
[18] M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, and J. P. Reithmaier, ” Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/ALGaAs distributed feedback lasers,” Appl. Phys. Lett., vol. 74, pp. 483-485, 1999,
[19] F. M Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-reliable and high-speed 1.3 μm complex-coupled distributed feedback buried-heterostructure laser diodes with Fe-doped InGaAsP/InP hybrid grating layers grown by MOCVD,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 540-546, 2008.
[20] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174-2176, 1993.
[21] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[22] M. R. Krames et al., “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999.
[23] T. Nishida, N. Kobayashi, and T. Ban, “GaN-free transparent ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 82, pp. 1-3, 2003.
[24] D. F. Guo, W. C. Yeou, W. S. Lour, W. C. Hsu, and W. C. Liu, “Regenerative switching phenomenon of a GaAs metal-n-(p+)-n-n+ structure,” Jpn. J. Appl. Phys., vol. 32, no. 7B, pp. L1011-L1013, 1993.
[25] D. F. Guo, S. R. Yih, J. T. Liang and W. C. Liu, “Characteristics of a GaAs Metal-n+--(p+)--n+ Switch,” Solid-State Electron., vol. 37, no. 2, pp. 223-229, 1994.
[26] D. F. Guo, C. C. Chang, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-negative-differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, no. 27, pp. 4185-4187, 1996.
[27] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, K. B. Thei and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switching for multiple-valued logic application,” IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 520-525, 1997.
[28] C. C. Cheng, J. H. Tsai, and W. C. Liu, “Multiple switching phenomena of AlGaAs/InGaAs/GaAs heterostructure transistors,” Jpn. J. Appl. Phys., vol. 36, no. 3A, pp. 980-983, 1997.
[29] T. Iwai, K. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, “42% high-efficiency two-stage HBT power-amplifier MMIC for W-CDMA cellular phone systems”, IEEE Trans. Microwave Theory and Tech., vol. 48, pp. 2567-2572, 2000.
[30] J. H. Kim, Y. S. Noh, and C. S. Park, “ A low quiescent current 3.3 V operation Linear MMIC power amplifier for 5 GHz WLNA Application”, IEEE Microwave Symp., pp. 867-870, 2003.
[31] S. Reed, Y. Wang, F. Huin, and S. Toutain, “HBT power amplifier with dynamic base biasing for 3G handset applications,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 380-382, 2004.
[32] Z. Griffith, E. Lind, M. J. W. Rodwell, X. M. Fangt, D. Loubychev, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT,” IEEE Indium Phosphide and Related Materials, pp. 403-406, 2007.
[33] W. Shockley, U.S. patent no. 2569347, and H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, pp. 1535-1536, 1957.
[34] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-St. Electron., vol. 15, pp. 1339-1343, 1972.
[35] M. J. Mondry and H. Kroemer, “Heterostructure bipolar transistor using a (Ga,In)P emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985
[36] H. Kanbe, J. C. Vlcek, and C. G. Fonstad, “(In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liquid phase epitaxy with high dc current gain,” IEEE Electron Device Lett., vol. 5, pp. 172-175, 1984.
[37] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “a new Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions”, Jap. J. Appl. Phys. vol.19, no. 5, pp.L225-L227, 1980.
[38] D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart and NT Linh, “Two-dimensional Electron Gas MESFET Structure,” Elecrtron. Lett., vol. 16, pp.667, 1980.
[39] J. J. Rosenberg, M. Benlamri, P. D. Kirchner, J. M. Woodall, and G. D. Pettit, “An In(0.15)Ga(0.85)As/GaAs Pseudomorhic single quantum well HEMT,” IEEE Electron Device Letters., vol. EDL-6, pp.491-493, Oct. 1985.
[40] K. Nellis and P. J. Zampardi, “A comparison of linear handset power amplifier in different bipolar technologies,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1746-1754, Oct. 2004.
[41] P. Zampardi, C. Cismaru, J. Li, A. Metzger, H. Shen, M. Sun, L. Rushing, R. Ramanathan, J. Yota, S. Machuga, and K. Weller, “High-volume manufacturing considerations for III-V merged HBT-FET (BiFET) technologies,” in CS-MAX 2005 Tech. Dig., Palm Springs, CA, Jan. 2005, pp. 32-34.
[42] A. G. Metzger, P. J. Zampardi, R. Ramanathan, and K. Weller, “Drivers and applications for an InGaP/GaAs merged HBT-FET (BiFET) technology,” presented at the IEEE 2006 Topical Workshop on Power Amplifiers (RWS), San Diego, CA, Jan. 2006, Session 3.5.
[43] J. Y. Yang, F. J. Morris, D. L. Plumton, and E. N. J. Jeffrey, “GaAs BIJFET technology for linear circuits,” in Dig. 1989 GaAs IC Symp., pp. 341-344.
[44] F. J. Morris, D. L. Plumton, J. Y. Yang, and H. T. Yuan, “Integrated circuit composed of group III-V compound field effect and bipolar semiconductors,” U.S. Patent 5,068,756, Nov. 26, 1991.
[45] D. Streit, D. Umemoto, K. Kobayashi, and A. Oki, “Monolithic HEMT-HBT integration for novel microwave circuit applications,” in Dig. 1994 GaAs IC Symp., pp. 329-332.
[46] K.Kiziloglu, M. W. Yung, H. C. Sun, S. Thomas, III, M. B. Kardos, R. H. Walden, J. J. Brown, and W. E. Stanchina, “InP-based mixed device(HEMT/HBT) technology on planar substrate for high performance mixed-signal and optoelectronic circuits,” Electron. Lett., vol. 33, no. 44, pp. 2065-2066, Nov. 1977.
[47] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Integration of InGaP/GaAs heterojunction bipolar transistors and high electron mobility transistors,” Electron Device Lett., vol. 17, no. 77, pp. 363-365, Jul. 1996.
[48] M. Sun, P. Zampardi, J. Li, R. Ramanathan, A. G. Metzger, C. Cismaru, V. Ho, L. Rushing, K. S. Stevens, M. Chaplin, and R. E. Welser, “A high yield manufacturable BiFET epitaxial profile for high volume production,” presented at the 2006 Int. Conf. Compound Semiconductor Manufacturing Technology (MANTECH), Vancouver, BC Canada, Apr. 2006, session 9.1.
[49] R. J. Roedel, W. West, T. S. Lee, D. Davito, and R. Adams, “The fabrication of Ga1-xAlxAs-GaAs heterojunction bipolar transistors for rapid material analysis,” IEEE Trans. Semiconduct. Manufact., vol. 8, no. 1, pp. 79-83, Feb. 1995.
[50] K. Itakura, Y. Shimamoto, T. Ueda, S. Katsu, and D. Ueda, “A GaAs Bi-FET technology for large scale integration,” in IEDM Tech. Dig., 1989, pp. 389-390.
[51] T. Arell, A. Gupta, W. Krystek, B. Peatman, and M. Shokrani, “InGaP-plus-A major advance in GaAs HBT technology,” in proc. IEEE Compound Semiconductor Integrated Circuit Symp., Nov. 2006, pp. 179-182.
[52] T. Henderson, J. Middleton, J. Mahoney, S Varma, T. Rivers, C. Nevers, and B. Avrit, “High performance BiHEMT HBT/E-D pHEMT integration,” presented at the Compound Semiconductor Manufacturing Technology (CS MANTECH) Conf., Austin, TX, May 2007.
[53] C. K. Lin, T. C. Tsai, S. L. Yu, C. C. Chang, Y. T. Cho, J. C. Yuan, C. P. Ho, T. Y. Chou, J. H. Hung, M. C. Tu, and Y. C. Wang, “Monolithic integration of E/D-mode pHEMT and InGaP HBT technology on 150-mm GaAs wafers,” presented at the Compound Semiconductor Manufacturing Technology (CS MANTECH) Conf., Austin, TX, May 2007.
[54] C. E. Chang, “Novel low power HBT technology,” ph.D. dissertation, Univ. California, San Diego, CA, 1995.
[55] D. Cheskis, C. E. Chang, W. H. Ku, P. M. Asbeck, M. F. Chang, R. L. Pierson, and A. Sailer, “Co-integration of AlGaAs/GaAs HBTs and GaAs FETs with a sample, manufacturable process,” in IEDM Tech. Dig., Dec. 1992, pp. 91-94.
[56] M. F. Chang, P. M. Asbeck, and R. L. Pierson, “Planar HBT-FET device,” U.S. Patent 5,250,826, Sep. 23, 1992.
[57] Y. F. Yang, C. C. Hsu, E. S. Yang, and Y. K. Cheng, “Comparison of InGaP/GaAs heterostructure-emitter bipolar transistors and heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, p. 1210, 1995.
[58] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Integration of InGaP/GaAs heterojunction bipolar transistors and high electron mobility transistors.” IEEE Electron Device Letters, vol. 17, no. 7, 1996.
[59] M. F. Chang, P. M. Asbeck, K. C. Wang, G. J. Sullivan, W. J. Ho, R. J. Anderson, and R. L. Pierson, “The fabrication of AlGaAs/GaAs HISTs.” Proceeding of the Twelfth State-of-the-Art Program of Compound Semiconductor (SOTAPACS XII) and Superlattice Structure Devices V. 90-15, pp. 179-184, 1990.
[60] H. Shen, A. M. Arrale, P. Dai, S. Tiku, and R. Ramanthan, “InGaP/GaAs HBT implantation leakage current and electrical breakdown.” Materials Science in Semiconductor Processing 7, pp.63-68, 2004.
[61] A. M. Arale, P. Bal, and S. Tiku, “Compound semiconductor manufacturing expo.” Tech. Dig. IDEM, 57, 2002.
[62] S. Ahmed, B. J. Sealy, and R. Gwilliam, “Dose dependence of proton-isolate n-type GaAs layers implanted at room temperature and 200℃.” Electron Lett., 38. 250-2, 2002.
[63] C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs.” IEEE Transaction on Electron Devices, vol 50, no. 10, Oct 2003.
[64] M. M. Hayat, B. E. A. Saleh, and M. C. Teich, “Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes.” IEEE Trans. Electron Dvices. vol 39, pp. 546-552, Mar. 1992.
[65] S. A. Plimmer, J. P. R. David, D. S, Ong, and K. F. Li, “A simple model for avalanche multiplication including dead space effects,” IEEE Trans. Electron Dvices. vol 46, pp. 769-775, Apr. 1999.
[66] D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simply model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys., vol 83, pp. 3426-3428, 1998.
[67] J. Y. Chen, C. Y. Chen, K. M. Lee, C. H. Yen, S. F. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature-dependent dc characteristics of an InGaAs/InGaAsP heterojunction bipolar transistor with an InGaAsP spacer and a composite-collector structure,” J. Vac. Sci. Technol. B, vol. 22, pp. 2727-2733, 2004.
[68] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chung, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
[69] E. Jarvinen, S. Kalajo, and M. Matilainen, “Bias circuits for GaAs HBT power amplifiers,” presented at the IEEE MTT-S Int. Microwave Symp., Phoenix, AZ, 2001, TUIF-28.
[70] A. Naik, A. Metzger, and T. L. Fowler, “Quiescent current control circuit for power amplifiers,” U.S. Patent 7,046,087, May 16, 2006.
[71] J. F. Sevic, “Statistical characterization of RF power amplifiers efficiency for CMDA wireless communication systems” in proc .1997 Wireless Communications Conf., pp. 110-113.
[72] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol .26, pp. 55-57, 1975.
[73] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
[74] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd/GaAs Schottky diodes prepared by electroless plating technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
[75] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
[76] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-state. Electron., vol. 25, pp. 753-758, 1982.
[77] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, “NO2 sensor based on InP epitaxial thin layers,” Thin Solid Films, vol. 348, pp. 266-272, 1999.
[78] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
[79] H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
[80] V. Battut, J. P. Blanc, and C. Maleysson, “Gas sensitivity of InP epitaxial thin layers” Sens. Actuators B, vol. 44, pp. 503-506, 1997.
[81] Y. I. Chou, C. M. Chen, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,“ IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.
[82] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEE Electron. Lett., vol. 38, no.2, pp. 92-94, 2002
[83] Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, vol. 21, pp. 2471-2477, 2003.
[84] K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electron-mobility transistor with a liquid phase oxidized AlGaAs as gate dielectric,” Solid-Stage Electron., vol. 49, pp. 213-217, 2005.
[85] S. Y. Cheng, K. Y. Chu, and L. Y. Chen, “A novel InGaP/AlxGa1-xAs/GaAs CEHBT,” IEEE Electron Device Lett., vol. 27, pp .532-534, 2006.
[86] S. I. Fu, R. C. Liu, S. Y. Cheng, P. H. Lai, Y. Y. Tsai, C. W. Hung, T. P. Chen, and W. C. Liu, “Comprehensive investigation on emitter ledge length of InGaP/GaAs heterojunction bipolar transistors,” J. Vac. Sci. Technol. B, vol. 25, pp. 691-696, 2007.
[87] S. S. Lu and C. C. Huang, “High-current-gain InGaP/GaAs heterojunction bipolar transistor gown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
[88] W. Liu, E. Beam, T. Henderson, and S. K. Fan, “Extrinsic base surface passivation in InGaP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 14, pp. 301-303, 1993.
[89] C. E. Huang, C. P. Lee, H. C. Liang, and R. T. Hung, “Critical spacing between emitter and base in InGaP heterojunction bipolar transistors (HBTs)” IEEE Electron Device Lett., vol. 23, pp. 576-578, 2002.
[90] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, vol. 41, pp. 456-457, 1994.
[91] K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device. Vol. 49, pp. 1687-1693, 2002.
[92] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown AlGaAs/InGaAs P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
[93] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Device. Vol. 42, pp. 804-809, 1995.
[94] J. P. R. David, R. Ghin, S. A. Plimmer, G. J. Rees, and R. Gray, “Temperature dependence of avalanche breakdown in GaAs p-i-n diodes.”
[95] H. K. Yow, P. A. Houston, C. M. Sidney Ng, C. Button, and J. S. Roberts, “High-temperature DC characteristics of AlInGaP/GaAs heterojunction bipolar transistors grown by metal organic vapor phase epitaxy,” IEEE Trans. Electron Devices, vol. 43, pp. 2-7, 1996.
[96] K. Ikossi-Anastasiou, A Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 13, pp. 414-417, 1992.
[97] N. Chand, R. Fischer, T. Henderson, J. Klem, W. Kopp, and H. Morkoc, “Temperature dependence of current gain in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 45, pp. 1086-1088, Nov. 1984.
[98] C. M. Wang, Y. M. Hsin, H. Zhu, J. M. Kuo, and Y. C. Kao, “Temperature dependent study of InAlAs-InP/GaAsSb/InP double heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 90, pp. 232102-1~232102-3, 2007.
[99] B. Mazhari, G. B. Gao, and H. Morkoc, “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State Electron, vol. 34, pp. 315-321, 1991.
[100] K. E. Bohlin, “Generalized Norde plot including determination of the ideality faxtor,” J. Appl. Phys., vol 60, pp. 1223-1224, 1986.
[101] C. S. Lee, Y. J. Chen, W. C. Hsu, K. H. Su, J. C. Huang, D. H. Huang, and C. L. Wu, “High-performance threshold characteristics of a symmetrically graded InAlAs/InGaAs/GaAs metamorphic high electron mobility transistor,” Appl. Phys. Lett., vol. 88, 223506, 2006.
[102] K. J. Chen, T. Enoki, K. Maezawa, K. Aria and M. Yamamoto, “High-performance InP-based enhancement-mode HEMT’s using non-alloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron. Device, vol. 43, p. 252, 1996.
[103] L. H. Chu, E. Y. Chang, L. Chang, Y. H. Wu, S. H. Chen, H. T. Hsu, T. L. Lee, Y. C. Lien, and C. Y. Chang, “Effect of gate sinking on the device performance of the InGaP/AlGaAs/InGaAs enhancement-mode PHEMT,” IEEE Electron Device Lett., vol. 28, pp. 82-85, 2007.
[104] Y. S. Linz, and Y. L. Hsieh, “Temperature-dependent characteristics of InGaP/InGaAs/GaAs high electron mobility transistor measured between 77 and 450K,” Journal of The Electrochemical Society, vol. 152, pp. G778-G780, 2005.
[105] A. G. Metzger, R. Ramanathan, J. Li, M. Sun, C. Cismaru, H. Shao, L. Rushing, K. P. Weller, C. J. Wei, Y. Zhu, A. Klimashov, Y. A. Tkachenko, B. Li, and P. J. Zampardi, “An InGaP/GaAs merged HBT-FET (BiFET) technology and applications to the design of handset power amplifiers,” IEEE Journal of Solid-state Circuits. vol. 42, no. 10, Oct. 2007.
[106] I. H. Lee, S. D. Lee, J. K. Rhee, and H. S. Park, “Studies on air-bridge processes for mm-wave MMIC's applications,” J. Korean Phys. Soc., vol. 35, pp. S1043-S1046, 1999.
[107] C. M. Wang, S. C. Huang, W. K. Huang and Y. M. Hsin, “An InP/InGaAs/InP DHBT with High Power Density at Ka-band,“ Solid-St. Electron., vol. 52, pp. 49-52, 2008.
[108] B. G. Min, J. M. Lee, S.I. Kim, C. W. Ju, and K. H. Lee, “Fabrication of reliable self-aligned lnP/lnGaAs/lnP double heterojunction bipolar transistor with hexagonal emitter mesa structure,” J. Korean Phys. Soc., vol. 49, pp. S780-S783, 2006.
[109] K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. G. Aitken, M. Nishimoto, J. H. Elliott, T. R. Block, A. K. Oki, and D. C. Streit, “A 44-GHz-high IP3 InP HBT MMIC amplifier for low DC power millimeter-wave receiver applications,” IEEE J. Solid-St. Circ., vol. 34, pp. 1188–1195, 1999.