簡易檢索 / 詳目顯示

研究生: 李欣倫
Li, Hsin-Lun
論文名稱: 具適應性電壓位置機制之漣波控制切換式降壓穩壓器研究與設計
Study and Design of Ripple-Controlled Switching Buck Converters with Adaptive Voltage Positioning (AVP) Mechanism
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: 切換式降壓轉換器適應性電壓位置(AVP)漣波控制固定導通時間控制無感測電流變頻校正技術
外文關鍵詞: Switching DC/DC Buck Converter, Adaptive Voltage Positioning (AVP), Ripple-based Control, Constant On-Time Control, SLCC
相關次數: 點閱:122下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對目前主要應用於切換式降壓轉換器的適應性電壓位置(AVP)技術進行介紹,讓目前的線性及漣波控制AVP得以清楚地被了解與分類,並根據「成本」及「變頻及誤差」分別提出二種不同的固定導通時間AVP控制實現例子:「具AVP機制之低成本適應導通時間控制切換式降壓轉換器」及「使用無感測電流變頻校正技術及動態視窗機制之適應導通時間控制AVP切換式降壓轉換器」。
    第一個實例主要是針對目前固定導通時間控制AVP文獻已出現的架構之成本考量,提出架構改善讓系統可以得到進一步的效能提升及降低成本。有別於傳統固定導通時間控制AVP由誤差放大器路徑進行輸出阻抗補償,「具AVP機制之低成本適應導通時間控制切換式降壓轉換器」實例改由電流感測濾波器端補償輸出阻抗,省去了誤差放大器的使用進一步地提升效能及降低設計成本,恢復漣波控制本來所具有的優勢,另外提出一極輕載音頻防止保護電路。量測結果證明此系統具有優異的暫態能力,回復時間只有4μs。對於輸入電壓的變頻現象也控制在僅±0.66%上下,最高效能可達到90.1%。
    第二個實例則是為了證明論文所提出的定頻技術「無感測式電流變頻校正技術」(Sensorless Load Current Correction, SLCC)。提供一套定頻的參考設計流程且無需使用耗能的電流感測電路,使漣波控制系統能達到「準定頻」的好處,降低後端電路濾波器的設計成本。量測結果證明,在負載電流為150mA到1000mA的範圍下,比起傳統用在COT控制上的減緩變頻技術,所提出的SLCC技術可有效地減緩對負載電流的變頻範圍至相當優異的±2.6%,有大約60%幅度的改善。當操作於輸入電壓2.7V且負載電流為150mA時可達到最高效能88.2%。
    本論文實現的兩種漣波控制AVP,皆依照所提出的設計方式,使用TSMC 0.18 μm CMOS Mixed Signal 1P6M 1.8&3.3V製程進行模擬並透過國家晶片系統設計中心(CIC)下線,並皆有完整的晶片量測結果。

    This thesis focuses on the study and design of Adaptive Voltage Positioning (AVP) technique and also the introduction and classification of linear and ripple based control AVP. According to the requirements of “cost” and “frequency variation and dc output offset”, this thesis proposed two different constant on-time control converter systems:“A Low-cost AOT(Adaptive On-Time)-Controlled Buck Converter with AVP Mechanism” and “Sensor-less Load Current Correction (SLCC) and Dynamic Tolerance Window (DTW) Techniques for AOT-Controlled AVP Buck Converter”.
    The goal of the first implementation is the high cost consideration of the existing constant on-time control AVP architectures. This thesis proposed a novel architecture which is low-cost and high efficiency. Instead of using error amplifier with external componenets to achieve the constant Zoc, “A Low-cost AOT-Controlled Buck Converter with AVP Mechanism” compensates Zoc with the aid of the current-sensing RC filter across the inductor. Without using error amplifier and extra external componenets, the proposed AOT AVP preserves the simple low-cost nature of the ripple-based control. For ensuring the system’s switching frequency not entering the range of acoustic frequency at light load, an AEAF (avoid entering acoustic frequency) circuit is also proposed. Experimental results show excellent transient recovery time of 4μs (under AVP mode), ±0.66% switching frequency variation (for the specified input voltage range), and 90.1% peak conversion efficiency.
    The other IC implementation focused on the frequency variation characteristic of ripple-based control. Sensor-less load current correction (SLCC) and dynamic tolerance window (DTW) techniques are proposed in this thesis to reduce the frequency variation due to conduction losses without employing complicated circuits such as PLL or current sensors. Experimental results show that the switching frequency variation has about 60% improvement over the traditional techniques in constant on-time control when the load current changes from 150mA to 1000mA. The measurement results also show that the frequency variation across the whole input/output and loading ranges can be reduced to only ±2.6%. The maximum power efficiency is 88.2% at 150mA with 2.7V input voltage.
    Both of the two proposed ripple-based control AVP system was fabricated with standard 0.18μm CMOS process with the aid of CIC. The complete chip measurement results are shown in this thesis.

    摘要 III Abstract V 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究與發展 3 1.3 目標與貢獻 4 1.4 論文架構簡介 5 第二章 切換式降壓轉換器控制技術簡介 7 2.1 傳統脈波寬度調變控制 8 2.1.1 電壓模式控制 8 2.1.2 峰值電流模式控制 9 2.1.3 比較與討論 10 2.2 漣波控制 11 2.2.1 遲滯控制 12 2.2.2 固定導通/固定不導通時間控制 15 2.2.3 比較與討論 18 2.3 漣波控制衍生問題與對策 19 2.3.1 低ESR的應用瓶頸 19 2.3.2 不固定的切換頻率 22 2.3.3 較差的輸出調節率 25 第三章 適應性電壓位置機制及傳統控制實現原理 26 3.1 AVP基本概念 27 3.2 AVP實現目標 : 定常數輸出阻抗 27 3.3 傳統峰值電流模式AVP 29 3.4 傳統電壓模式AVP (AVP-, AVP+) 33 3.5 輸出電容種類對傳統AVP控制實現之影響 35 3.5.1 常見的輸出電容特性比較 36 3.5.2 陶瓷輸出電容衍生之設計問題 37 3.5.3 控制架構的應變 38 3.6 比較與討論 41 3.7 近年相關研究 41 第四章 適應性電壓位置機制之漣波控制原理及實現技術 44 4.1 V2 AVP控制 44 4.2 遲滯AVP控制 45 4.3 固定導通時間AVP控制 47 4.4 比較與討論 50 4.5 近年相關研究(數位漣波AVP控制) 51 第五章 具AVP機制之低成本適應性導通時間控制切換式降壓轉換器 52 5.1 目標與應用 52 5.2 架構原理與分析 54 5.2.1 適應性導通時間AVP 控制 55 5.2.2 定常數輸出阻抗-電流感測濾波器補償設計 57 5.3 電路設計 62 5.3.1 比較器 62 5.3.2 適應性導通時間產生器 63 5.3.3 最小關閉時間產生器 64 5.3.4 零電流偵測電路 65 5.3.5 極輕載音頻防止電路 66 5.3.6 功率級驅動及停滯時間電路 67 5.3.7 功率級電晶體 68 5.3.8 帶差參考電壓電路 68 5.3.9 緩啟動電路 69 5.4 晶片佈局與量測規畫 70 5.4.1 佈局考量與實施要點 70 5.4.2 量測考量與實施要點 71 5.5 量測結果 73 5.5.1 穩態 73 5.5.2 負載線量測 76 5.5.3 暫態 76 5.5.4 效率與切換頻率變動 78 5.5.5 頻域響應 79 5.5.6 其他量測 81 5.6 成果比較與討論 82 第六章 使用無感測電流變頻校正技術及動態視窗機制之適應導通時間控制AVP切換式降壓轉換器 84 6.1 目標與應用 85 6.2 系統運作原理與分析 88 6.2.1 無感測電流變頻校正技術 88 6.2.2 動態視窗機制 92 6.3 電路設計 93 6.3.1 漣波放大器 93 6.3.2 適應性電阻控制器 94 6.3.3 具基極電流補償的帶差參考電路 95 6.3.4 過熱保護電路 96 6.3.5 負載偵測電路及過電流保護電路 97 6.4 晶片佈局與量測規畫 98 6.4.1 佈局考量與實施要點 98 6.4.2 量測考量與實施要點 99 6.5 量測結果 101 6.5.1 穩態 101 6.5.2 負載線量測 103 6.5.3 暫態 103 6.5.4 效率與切換頻率變動 104 6.5.5 頻域響應 106 6.5.6 其他量測 106 6.6 成果比較與討論 107 6.7 第三次下線 110 6.7.1 輸出誤差校正機制概念 110 6.7.2 實現電路 110 第七章 結論 112 7.1 總結與貢獻 112 7.2 未來工作與研究方向 113 參考文獻 114

    [1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, Apr. 19, 1965. Also available at ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf.
    [2] Intel document, “Voltage regulator module (VRM) and enterprise voltage regulator-down (EVRD) 11.1 design guidelines,” September, 2009.
    [3] G. K. Schoneman and D. M. Mitchell, “Output Impedance Considerations for Switching Regulators with Current-Injected Control,” IEEE Trans. Power Electronics, vol. 4, pp. 324-335, Jan. 1989.
    [4] R. Redl, B. P. Erisman, and Z. Zansky, “Optimizing the load transient response of the buck converter,” in Proc. IEEE APEC, 1998, pp.170-176.
    [5] M. T. Zhang, “Powering Intel Pentium 4 generation processors,” in Proc. IEEE EPEP, 2001, pp. 215-218.
    [6] R. Lenk, “Understanding droop and programmable active droop,” Fairchild application bulletin AB-24.
    [7] K. Yao, Y. Meng, P. Xu, and F. C. Lee, “Design consideration for VRM transient response based on output impedance,” in Proc. IEEE APEC, 2002, pp.14-20.
    [8] K. Yao, Y. Meng, P. Xu, and F. C. Lee, “Optimal design of the active droop control method for the transient response,” in Proc. IEEE APEC, 2003, pp.718-723.
    [9] K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, and F. C. Lee, “Adaptive Voltage Position Design for Voltage Regulators,” in Proc. IEEE APEC, 2004, pp. 272-278.
    [10] W. Huang, “The Design of a High-Frequency Multiphase Voltage Regulator with Adaptive Voltage Positioning and All Ceramic Capacitors,” in Proc. APEC, 2005, pp. 270-275.
    [11] S. K. Mishra, “Design-oriented analysis of modern active droop-controlled power supplies,” IEEE Trans. Industrial Electronics, vol. 56, pp. 3704-3708, Sep. 2009.
    [12] M. Lee, D. Chen, C.-W. Liu, K. Huang, E. Tseng, and B. Tai, “Compensator Design for Adaptive Voltage Positioning (AVP) for Multiphase VRMs,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [13] M. Lee, D. Chen, and C.-W. Liu, “Modeling and Design for a Novel Adaptive Voltage Positioning (AVP) Scheme for Multiphase VRMs,” IEEE Trans. Power Electronics, vol. 23, pp. 1733-1742, Jul. 2008.
    [14] M. Lee, D. Chen, C.-W. Liu, K. Huang, E. Tseng, and B. Tai, “Comparisons of Three control Schemes for Adaptive Voltage Positioning Droop for VRMs Applications,” in Proc. IEEE EPEPEMC, 2006, pp. 206-211.
    [15] M. Lee, D. Chen, C.-W. Liu, K. Huang, E. Tseng, and B. Tai, “Evaluation of various AVP schemes for computer power source,” J. Chinese Institute of Engineers, vol.30, pp. 1137-1143, Mar. 2007.
    [16] X. Zhang, G. Yao, and A. Q. Huang, “A novel VRM control with direct load current feedback,” in Proc. APEC, 2004, pp. 267-271.
    [17] J. Sun, J. Zhou, M. Xu, and F. C. Lee, “A Novel Input-Side Current Sensing Method to Achieve AVP for Future VRs,” IEEE Trans. Power Electronics, vol. 21, pp.1235-1242, Sep. 2006.
    [18] H. H. Huang, C. Y. Hsieh, J. Y. Liao, and K. H. Chen, “Adaptive Droop Resistance Technique for Adaptive Voltage Positioning in Boost DC-DC Converters,” in Proc. IEEE ESCIRC, pp.528-531, 2010.
    [19] N. Rossetti, “Valley design technique outperform peak current-mode approach for cpu supplies,” PCIM, Jul. 2001.
    [20] S. Pan and P. K. Jain,” A New Digital Adaptive Voltage Positioning Technique with Dynamically Varying Voltage and Current References,” IEEE Trans. Power Electronics, vol. 24, pp. 2612-2624, 2010.
    [21] A. V. Peterchev, X. Jinwen, and S. R. Sanders, "Architecture and IC implementation of a Digital VRM controller," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 356-364, Jan. 2003.
    [22] L. Corradini, A. Costabeber, P. Mattavelli, and S. Saggini, “Time optimal, parameters-insensitive digital controller for VRM applications with adaptive voltage positioning,” in Proc. IEEE COMPEL, 2008, pp. 1–8.
    [23] K.-Y. Cheng, F. Yu, S. Tian, F. C. Lee, and P. Mattavelli, ”Digital hybrid ripple-based constant on-time control for voltage regulator modules," in Proc. IEEE Appl. Power Electron. Conf., 2011, pp. 346-353.
    [24] P. Gu and W. Li, ”An architecture without current-sensing circuits for digital DC-DC controller to achieve adaptive voltage position,” in Proc. IEEE Appl. Power Electron. Conf., 2007, pp. 563-568.
    [25] J. A. A. Qahouq and V. Arikatla, ”Power Converter With Digital Sensorless Adaptive Voltage Positioning Control Scheme,” IEEE Trans. Industrial Electronics, vol. 58, pp. 4105-4116, Sep. 2011.
    [26] J. R. Huang, C.-S. Huang, C. J. Lee, and E. K.-L. Tseng, “Native AVP Control Method for Constant Output Impedance of DC Power Converters,” in Proc. PESC, 2007, pp. 2023-2028.
    [27] J.-R. Huang, K.-L. Tseng, G. Bernacchia, and M. Inversi, “Low-gain current-mode voltage regulator,” TW Patent I330923, Feb. 15, 2007.
    [28] J.-R. Huang, K.-L. Tseng, G. Bernacchia, and M. Inversi, “Low-gain current-mode voltage regulator,” U.S. Patent 7,436,158 B2, Jul. 27, 2007.
    [29] C.-J. Chen, D. Chen, C.-S. Huang, M. Lee, and E. K.-L. Tseng, “Modeling and Design Considerations of a Novel High-Gain Peak Current Control Scheme to Achieve Adaptive Voltage Positioning (AVP) for DC Power Converters,” IEEE Trans. Power Electronics, vol. 24, pp. 2942-2950, Dec. 2009.
    [30] Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001
    [31] R. B. Ridley, B.-H. Cho, and C.-F. Lee, “Analysis and Interpretation of Loop Gains of Multiloop-Controlled Switching Regulators,” IEEE Trans. Power Electronics, vol. 3, pp.489-499, Oct. 1988.
    [32] R. Redl and J. Sun, “Ripple-Based Control of Switching Regulators-An Overview,” IEEE Trans. Power Electronics vol. 24, pp. 2669-2680, Dec. 2009.
    [33] F. Su, W.-H. Ki, and C.-Y. Tsui, "Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications," IEEE Journal of Solid-State Circuits, vol. 43, pp. 815-822, Apr. 2008.
    [34] L. K. Wong and T. K. Man, "Steady State Analysis of Hysteretic Control Buck Converters," in 13th Power Electronics and Motion Control Conference, 2008, pp. 400-404.
    [35] C. Song, "Optimizing Accuracy of Hysteretic Control," Power Electronic Technology, Application Notes, 2006.
    [36] J. Wang, J. Xu, and B. Bao, "Analysis of Pulse Bursting Phenomenon in Constant-On-Time-Controlled Buck Converter," IEEE Transactions on Industrial Electronics, vol. 58, pp. 5406-5410, Dec. 2011.
    [37] P. Y. Wu and P. K. T. Mok, "A Monolithic Buck Converter With Near-Optimum Reference Tracking Response Using Adaptive-Output-Feedback," IEEE Journal of Solid-State Circuits, vol. 42, pp. 2441-2450, Nov. 2007.
    [38] Y. Y. Mai and P. K. T. Mok, "A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, pp. 748-752, Aug. 2008.
    [39] W. C. Chen, C. S. Wang, Y. P. Su, Y. H. Lee, C. C. Lin, and K.-H. Chen, "Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-Time Control for Buck Converter With Multilayer Ceramic Capacitors," IEEE Transactions on Power Electronics, vol. 28, pp. 2366-2376,May. 2013.
    [40] Y.-H. Lee, S.-J. Wang, and K.-H. Chen, "Quadratic Differential and Integration Technique in V2 Control Buck Converter With Small ESR Capacitor," IEEE Transactions on Power Electronics, vol. 25, pp. 829-838,Apr. 2010.
    [41] 左仲先, 應用於切換式直流至直流轉換器之高性能互補金氧半控制器: 國立交通大學博士論文, 2004.
    [42] R. Redl and G. Reizik, "Switched-Noise Filter for the Buck Converter Using the Output Ripple as the PWM Ramp," in 20th IEEE Applied Power Electronics Conference and Exposition, 2005, pp. 918-924 Vol. 2.
    [43] T. Tateishi and Aichi, "Parallel RC Current Dectection Circuit and DC/DC Converter with A Parallel RC Current Detection Circuit," U.S. Patnet 6,469,481, Oct. 22, 2002.
    [44] “D-CAPTM With All-Ceramic Output Capacitor Application,” TI Application Report, 2011.
    [45] F. Su and W.-H. Ki, "Digitally Assisted Quasi-V2 Hysteretic Buck Converter with Fixed Frequency and without Using Large-ESR Capacitor," in IEEE International Solid-State Circuits Conference, 2009, pp. 446-447,447a.
    [46] T. Nabeshima, T. Sato, S. Yoshida, S. Chiba, and K. Onda, "Analysis and Design Considerations of a Buck Converter with a Hysteretic PWM Controller," in 35th IEEE Power Electronics Specialists Conference, 2004, pp. 1711-1716 Vol.2.
    [47] J.-J. Chen, "A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Cuurent-Sensing Circuits," IEEE Transactions on Industrial Electronics vol. 55, pp. 1101-1111, 2008.
    [48] C.-H. Tso and J.-C. Wu, "A Ripple Control Buck Regulator with Fixed Output Frequency," IEEE Power Electronics Letters, vol. 1, pp. 61-63, Sep. 2003.
    [49] X. Jing, P. K. T. Mok, and M. C. Lee, “Current-Slope-Controlled Adaptive-On-Time DC-DC Converter with Fixed Frequency and Fast Transient Response,” in Proc. IEEE ISCAS, 2011, pp.1908-1911.
    [50] C. H. Tsai, S. M. Lin, and C. S. Huang, "A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control With a Load Current Correction (LCC) Technique," IEEE Transactions on Power Electronics, vol. 28, pp. 3949-3957,August. 2013.
    [51] W.R. Liou, M.L. Yeh and Y.L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC For Portable Applications," IEEE Transactions on Power Electronics, vol. 23, pp. 667-677,March. 2008.
    [52] R. Rene, “Circuit for suppression of leading edge spike switched current,” U.S. Patent 7,436,158 B2, Sep.12, 1989.
    [53] J. Wei, F. C. Lee, “An Output Impedance-Based Design of Voltage Regulator Output Capacitors for High Slew-Rate Load Current Transients”, in Proc. IEEE APEC, 2004, pp. 304-310.
    [54] M. Castilla, L. G. d. Vicuna, J. M. Guerrero, J. Matas, and J. Miret, “Simple Low-Cost Hysteretic Controller for Single-Phase Synchronous Buck Converters,” IEEE Trans. Power Electronics, vol. 22, pp. 1232-1241, Jul. 2007.
    [55] M. Castilla, L. G. d. Vicuna, J. M. Guerrero, J. Matas, and J. Miret, “Designing VRM Hysteretic Controllers for Optimal Transient Response,” IEEE Trans. Industrial Electronics, vol. 54, pp. 1726-1738, Jun. 2007.
    [56] 3V to 28V Input, Low-Cost, Hysteretic Synchronous Step-down Converters, Maxim, Data Sheet of Chip MAX8576-MAX8579, Aug. 2004.
    [57] M. Castilla, J. M. Guerrero, J. Matas, J. Miret, and J. Sosa, “Comparative study of hysteretic controllers for single-phase voltage regulators,” IET Power Electron., vol. 1, no. 1, pp. 132–143, Mar. 2008.
    [58] P. Hazucha et al., “A 233-MHz 80%-87% efficient four-phase DC-DC converter utilizing air-core inductors on package,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 838–845, Apr. 2005.
    [59] X. Duan, J. Park, and A. Q. Huang, “Current-Mode Variable-Frequency Control Architecture for High-Current Low-Voltage DC–DC Converters,” IEEE Trans. Power Electronics, vol. 21, pp.1133-1137, Jul. 2006.
    [60] J. Fan, X. Li, S. K. Lim, and A. Q. Huang, “Design and Characterization of Differentially Enhanced Duty Ripple Control (DE-DRC) for Step-Down Converter,” IEEE Trans. Power Electronics, vol. 24, pp. 2714-2725, Dec. 2009.
    [61] J. Fan, X. Li, J. Park, A. Huang, “A monolithic buck converter using differentially enhanced duty ripple control”, IEEE CICC, pp.527-530, September 2009.
    [62] Y. C. Lin, C. J. Chen, D. Chen, and B. Wang, “A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters,” IEEE Trans. Power Electronics, vol. 27, pp. 4301-4310, Oct. 2012.
    [63] R. B. Ridley, “A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM,” in Record, IEEE Power Electronics Specialists Conference, 1990, pp. 382-389.
    [64] W. Huang, “A new control for multi-phase buck converter with fast transient response,” in Proc. IEEE APEC’01 Conf., 2001, pp. 273–279.
    [65] “TPS53317: 6-A Output D-CAP+TM Mode Synchronous Step-Down, Integrated-FET Converter for DDR Memory Termination,” TI Datasheet, 2011.
    [66] “RT8168B: Dual Single-Phase PWM Controller for CPU and GPU Core Power Supply, ” Richtek Datasheet, November, 2011.
    [67] “CS5308: Two-Phase PWM Controller with Integrated Gate Drivers for VRM 8.5,” ON Semiconductor Datasheet, 2002.
    [68] R. Miftakhutdinov, “An Analytical Comparison of Alternative Control Techniques for Powering Next-Generation Microprocessors,” in Proc. Power Supply Design Sem. Presentation Material Texas Instruments-Unitrode, 2001.
    [69] X. Zhou, J. Fan, and A. Q. Huang, “Monolithic DC offset-calibration method for adaptive on-time control buck converter,” in Proc. IEEE ECCE, 2009, pp. 655-658.
    [70] J. Lee and F. C. Lee, “New Modeling Approach for Current-Mode Control,” in Proc. APEC, 2009, pp. 305-311.
    [71] Y. Yan and F. C. Lee, “Dynamic Performance Comparison of Current Mode Control Schemes for Point-of-Load Buck Converter Application,” in Proc. APEC, 2012, pp. 2484-2491.
    [72] Y. Du, Q. Liu, and A. Q. Huang, “A Monolithic CMOS Synchronous Buck Converter with a Fast and Low-cost Current Sensing Scheme,” in Proc. ECCE, 2012, pp. 1849-1856.
    [73] Toni Lopez, Reinhold Elferich and Eduard Alarcon, Voltage Regulators for Next Generation Microprocessors, Springer Academic Publishers, 2011
    [74] “AD8129: Low Cost 270MHz Differential Receiver Amplifiers,” Analog Device Datasheet, 2005.
    [75] 黃俊勝, 電流模式與漣波控制積體式切換穩壓器之研究與設計: 國立成功大學碩士論文, 2011.
    [76] 王禎佑, 漣波控制切換式升壓調節器之研究與設計: 國立成功大學碩士論文, 2012.
    [77] 黃晉益, 以數位控制實現之AVP模式切換式降壓型直流-直流轉換器: 國立成功大學碩士論文, 2010.
    [78] 李忠樹, 具適應性電壓位置控制之電壓調整器之分析與設計: 國立台灣大學博士論文, 2008.
    [79] 陳景然, 應用於電腦電源之電壓調節器控制架構建模與設計: 國立台灣大學博士論文, 2011.
    [80] “TPS51220A: Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller,” TI Datasheet, 2013.
    [81] “LM27262: Intel CPU Core Voltage Regulator Controller for VRD10 Compatible PCs,” TI Datasheet, 2013.
    [82] “RT8805: 4/3/2/1-Phase PWM Controller, ”Richtek Datasheet, July, 2008.
    [83] “RT8856: Multi-phase PWM Controller for CPU Core Power Supply, ”Richtek Datasheet, June, 2011.
    [84] “Agilent 4395A: Network/Spectrum/Impedance Analyzer 500MHz, Agilent 4396B: Network/Spectrum/Impedance Analyzer 1.8GHz, “Agilent Datasheet, 2008.
    [85] E. Roberto, “Output Impedance Measurement in Low-Power Sources and Conditioners,” IEEE Trans. Instrumentation and Measurement, vol. 58, pp. 180-186, Jan. 2009.
    [86] D. Lu, J. Yu, Z. Hong, J. Mao, H. Zhao, and E. Cirot, “A 10MHz Ripple-based On-time Controlled Buck Converter with Dual Ripple Compensation and Real-time Efficiency Optimization,” in Proc. IEEE ESCIRC, pp.333-336, 2012.
    [87] “RT275/76: 3A, 18V, 700kHz ACOTTM Synchronous Step-Down Converter, ”Richtek Datasheet, June, 2013.
    [88] K. Y. Cheng, F. Yu, S. Tian, F. C. Lee, and P. Mattavelli, “Digital Hybrid ripple-based constant on-time control for voltage regulator module,” in Proc. IEEE APEC, 2011, pp. 346-353.
    [89] X. Duan, “High Performance Integrated Controller with Variable Frequency Control for DC-DC Converters,” Ph. D dissertation, North Carolina State University, 2006.
    [90] J. Fan, “Design and Characterization of Differentially Enhanced Duty Ripple Control for DC-DC Converters,” Ph. D dissertation, North Carolina State University, 2010.
    [91] W. W. Chen, J. F. Chen, T. J. Liang, L. C. Wei, J. R. Huang, and Wei-Yuan Ting, “A Novel Quick Response of RBCOT With VIC Ripple for Buck Converter,” IEEE Trans. Power Electronics, vol. 28, pp. 4299-4307, Sep. 2013.
    [92] J. Sun, “Characterization and performance comparison of ripple-based control for voltage regulator modules,” IEEE Trans. Power Electronics, vol. 21, no. 2, pp. 346–353, Mar. 2006.
    [93] K. Lee, K. Yao, X. Zhang, Y. Qiu, and F. C. Lee, “A novel control method for multiphase voltage regulators,” in Proc. IEEE APEC’03 Conf., 2003, pp. 738-743
    [94] L. Jia, and Y. F. Liu, “Low Cost Microcontroller Based Implementation of Robust Voltage Based Capacitor Charge Balance Control Algorithm,” IEEE Trans. Industrial Informatics, vol. 9, pp. 869-879, May. 2013.
    [95] Y. C. Lin, D. Chen, Y. C. Lin, C. J. Chen, and C. H. Wang, “A Novel Constant On-Time Current-Mode Control Scheme to Achieve Adaptive Voltage Positioning for DC Power Converters,” in Proc. IECON, 2012, pp. 104-109.
    [96] “FAN5093: Two Phase Interleaved Synchronous Buck Converter for VRM 9.x Applications,” FAIRCHILD Datasheet, 2003.

    下載圖示 校內:2018-07-04公開
    校外:2018-07-04公開
    QR CODE