| 研究生: |
徐仁君 Xu, Ren-Jun |
|---|---|
| 論文名稱: |
未飽和孔隙介質受簡諧振盪下其彈性波
傳遞及衰退行為之數值研究 A numerical study on elastic wave propagation and attenuation through an unsaturated porous medium induced by a harmonic excitation |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 互制 、孔隙介質 、彈性波 、有限差分顯式法 |
| 外文關鍵詞: | Dilatational waves, coupling, Porous media, explicit finite difference method |
| 相關次數: | 點閱:143 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
孔彈性力學理論已經在工程應用上廣泛地被認為可以精確地分析兩種非混合流體在孔隙介質中複雜力學機制的有效解析方法。然而,因為孔彈性力學理論其偏微分方程式中所含之慣性阻力項、黏滯阻力項和應力項皆為互相互制(coupling)。因此,除非在特定情況下,否則無法求得孔彈性理論其封閉形態(closed-form)之穩態解析解。本文利用有限差分法將兩個流體系統的孔彈性力學理論內偏微分方程式之互制項加以離散化,以進一步數值模擬分析彈性波在未飽和孔隙介質之傳波行為。
本文探討彈性波在拘限含水層傳遞時之應力的變化,經由有限差分數值模擬後,可以求得總壓力與兩個孔隙流體相壓力值。文中發現在我們模擬的傳波頻率的變化下(1 Hz、5 Hz、10 Hz),當頻率越大,隨著距離越遠則彈性波衰退程度也越大(頻率在1 Hz的彈性波隨著距離的傳遞,衰減的能量就比頻率為10 Hz來的小);在起始孔隙流體飽和度的變化下( = 0.1、0.2、0.3、0.4、0.5),衰退係數隨著飽和度越大而越大(飽和度0.1之衰退係數比飽和度0.5小)。
Poroelasticity theory has long been regarded as an effective method to analyze complex mechanics of two immiscible fluids in an elastic porous medium in a precise way. However, the resulting partial differential equations in the theory of poroelasticity intrinsically take on a coupled form in the terms pertinent to inertial drag, viscous damping, and applied stress. Therefore, the closed-form analytical solution cannot be solved except in specific cases. The present study analyzes the characteristics of wave propagation of elastic waves in an unsaturated porous medium by discretizing the coupled equations using the Finite Difference Method.
A numerical study was performed to determine the induced total pressure and the pore fluid pressures due to elastic wave propagation and attenuation through unsaturated porous media in a confined area caused by a harmonic excitation. Our numerical simulation indicates that under the excitation frequencies we examined (1, 5, and 10Hz), the attenuation is found to increase with an increase in distance and excitation frequency. In reference to initial non-wetting water saturation ( = 0.1, 0.2, 0.3, 0.4, and 0.5), it is shown to be positively related to the attenuation.
[1] Alford R. M., Kelly K. R., and Boore D. M., Accuracy of finite-difference modeling of the acoustic-Wave equation, geophysics, Vol. 39, No. 6, pp. 834-842, 1974
[2] Alterman Z, and Karal F. C., Propagation of elastic waves in layered media by finite difference methods, Vol. 58, lussue: 1 , pp. 367-398, 1968
[3] Bear J, and Y. Bachmat, Introduction to modeling of transport phenomena in porous media, Kluwer Academic Publisher, Netherlands, 1991.
[4] Beresnev, I. A., and P. A. Johnson, Elastic-wave stimulation of oil production: a review of methods and results, Geophysics, Vol. 59, no. 6, pp. 1000-1017, 1994.
[5] Berryman, J. G., Confirmation of Biot’s theory, Applied Physics Letters, Vol. 37, no. 4, pp. 382-384, 1980.
[6] Berryman, J. G., Effective conductivity by fluid analogy for a porous insulator filled with a conductor, Physical Review B, Vol. 27, no. 12, pp. 7789-7792, 1983.
[7] Berryman, J. G., Thigpen, L., and Chin, R. C. Y., Bulk elastic wave propagation in partially saturated porous solids, Journal of the Acoustical Society of America, Vol.84, no. 1, pp. 360-373, 1988.
[8] Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2,pp. 168-178, 1956a.
[9] Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, II. Higher frequency range, Journal of the Acoustical Society of America, Vol. 28,no. 2, pp. 179-191, 1956b.
[10] Biot, M. A., and Willis, D. G., The elastic coefficient of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, pp. 594-601, 1957.
[11] Brutsaert, W., The propagation of elastic waves in unconsolidated unsaturated granular mediums, Journal of Geophysical Research, Vol. 69, no.2, pp. 243-257,1964.
[12] Boore, D. M., Love waves in nonuniform wave guides finite difference calculations, jouurnal of basic engineering, Vol. 75, no.8, pp. 1512, 1970.
[13] Brutsaert, W., and J. M. Luthin, The velocity of sound in soils near the surface as a function of the moisture content, Journal of Geophysical Research, Vol. 69, no. 4, pp. 643-652, 1964.
[14] Cebeci, T., and Smith, A., A Finite-difference method for calculating compressible laminar and turbulent boundary layers, journal of basic engineering , Vol. 92, no.3, pp. 523, 1970
[15] Garg, S. K., and A. H. Nayfeh, Compressional wave propagation in liquid and/or gas saturated elastic porous media, Journal of Applied Physics, Vol. 60, no. 9, pp. 3045–3055, 1986.
[16] Gray, W. G., General conservation equations for multi-phase systems: 4. Constitutive theory including phase change. Advances in Water Resources, Vol. 6, pp. 130–140, 1983.
[17] Hughes, E. R., T. G. Leighton, G. W. Petley, P. R. White, and R. Cm. Chivers, Estimation of critical and viscous frequencies for Biot theory in cancellous bone, Ultrasonics, Vol. 41, no. 5, pp. 365-368, 2003.
[18] Johnson, D. L., Recent developments in the acoustic properties of porous media, in Proceedings of the international school of physics “Enrico Fermi” Course XCIII, Frontiers in physical acoustics, edited by Sette, pp. 255–290, 1986.
[19] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagag., vol.AP-14, pp. 302-307, 1966.
[20] Lo, W.-C., G. Sposito, E. Majer, Immiscible two-phase fluid flows in deformable porous media, Advances in Water Resources, Vol. 25(8–12), pp. 1105–1117, 2002.
[21] Lo, W.-C., G. Sposito, E. Majer, Wave propagation through elastic porous media containing two immiscible fluids, Water Resources Research, Vol. 41, no. 2, pp. W02025, 2005.
[22] Lo, W.-C., G. Sposito, E. Majer, Analytical decoupling of poroelasticity equations for acoustic-wave propagation and attenuation in a porous medium containing two immiscible fluids, Journal of Engineering Mathematics, Vol. 64, no. 2, pp. 219-235, 2009.
[23] Roberts, P. M., A. Sharma, V. Uddameri, M. Monagle, D. E. Dale, and L. K. Steck, Enhanced DNAPL transport in a sand core during dynamic stress stimulation, Environmental engineering science, Vol. 18, no. 2, pp. 67-79, 2001.
[24] Santos, J. E., Corbero, J. M. and Douglas, J., Static and dynamic behavior of a porous solid saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1428-1438, 1990a.
[25] Santos, J. E., Douglas, J., Corbero, J., and Lovera, O. M., A model for wave propagation in a porous medium saturated by a two-phase fluid, Journal of the Acoustical Society of America, Vol. 87, no. 4, pp. 1439-1448, 1990b.
[26] Santos, J. E., Ravazzoli, C. L., Gauzellino, P. M., Carcione, J. M., and Cavallini, F., Simulation of waves in poro-viscoelastic rocks saturated by immiscible fluids. Numerical evidence of a second slow wave, Journal of Computational Acoustics,Vol. 12, no. 1, pp. 1-21, 2004.
[27] Tuncay, K., and M. Y. Corapcioglu, Body waves in poroelastic media saturated by two immiscible fluids, Journal of Geophysical Research, Vol. 101, No. B11, pp. 25149-25159, 1996.
[28] Tuncay, K., and M. Y. Corapcioglu, Wave propagation in poroelastic media saturated by two fluids, Journal of Applied Mechanics, Vol. 64, no. 2, pp. 313–320, 1997.
[29] van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Vol. 44, no. 5, pp. 892–898, 1980.
[30] Wei, C., and K. K. Muraleetharan, A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity, International Journal of Engineering Science, Vol. 40, pp. 1807–1833, 2002.
[31] Whitaker, S., Transport equations for multiphase system, Chemical Engineering Science, Vol. 28, no. 1, pp. 139–147, 1973.
[32] 葉昭龍, 「彈性波在飽和及未飽和土壤中傳波特性之影響評估」, 國立成功大學水利及海洋工程學系碩士論文, 2005.
[33] 李文豐, 「慣性及黏滯互制效應對彈性波在兩種不可混合流體的孔隙介質中之影響評估」, 國立成功大學水利及海洋工程學系碩士論文, 2007.
[34] 李哲瑋, 「毛細張力變化對膨脹波在未飽和孔彈性介質中傳波特性之影響評估」, 國立成功大學水利及海洋工程學系碩士論文, 2008.