簡易檢索 / 詳目顯示

研究生: 蔡東翰
Tsai, Tung-Han
論文名稱: 固定配比下於實務上降低巨積混凝土新拌溫度之效益探討
An Experimental Study to Decrease the Fresh Concrete Temperature of Mass Concrete with Fixed Proportioning
指導教授: 羅偉誠
Lo, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 48
中文關鍵詞: 巨積混凝土降溫措施新拌溫度心表溫差
外文關鍵詞: mass concrete, fresh concrete temperature, cooling measures, temperature difference between core and surface
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於巨積混凝土因水泥水化熱累積與散熱不易等原因,易造混凝土心溫與表溫差值過大,因此工地澆置時須嚴格控制溫度,將溫度控制於規範建議值內,而混凝土新拌溫度為影響澆置溫度的重要因素,因此本文主要在探討實務上,混凝土廠該如何透過不同的降溫措施,將巨積混凝土的新拌溫度有效降低並且確保混凝土依據配比設計的標準達到目標強度與耐用性。
    首先需要了實務上出料地點與澆置地點間的運輸距離與時間,並記錄一般狀況下,混凝土新拌溫度經過運送後到達工地現場的澆置溫度,比較兩者間的溫差,有了澆置溫度與新拌溫度的溫差,就能評估混凝土廠在新拌溫度的控制須達到幾度才能符合規範,再透過廠內的材料以不同溫度進行拌合比較其新拌溫度是否符合要求,有了這些數值即能規劃降溫措施的選擇,並以不同的降溫措施間得搭配進行實驗,將每個降溫方法所需的成本與實用性進行考量,在實際出料時,依據現實狀況進行不同降溫方法的搭配。
    文中最後透過實際出料的新拌溫度與澆置溫度數據的比較去討論不同降溫方式的優缺點,以及工地澆置完巨積混凝土後心表溫差是否符合規範要求。

    Due to factors such as the accumulation of heat from cement hydration and difficulties in dissipating heat, there is often a large temperature difference between the core and surface of mass concrete. Therefore, it is necessary to strictly control the temperature during construction and keep it within the recommended range specified in regulations. The fresh concrete temperature is an important factor affecting the grouting temperature, so this study mainly explores practical methods for concrete plants to effectively reduce the fresh concrete temperature of mass concrete through different cooling measures while ensuring that the concrete meets the target strength and durability according to the proportioning design.

    First, it is necessary to determine the distance and time between the location where the concrete is produced and the site where it will be grouted, and record the temperature of the concrete at the site under normal conditions after transportation. By comparing the temperature difference between the grouting temperature and the fresh concrete temperature, the concrete plant can assess how much they need to reduce the fresh concrete temperature to meet regulations. By comparing the fresh concrete temperature of materials mixed at different temperatures in the plant, suitable cooling measures and experiments can be chosen with different combinations of measures, considering the cost and practicality of each. During actual production, different cooling methods can be used according to the actual situation.

    Finally, by comparing the actual fresh concrete temperature and grouting temperature data, this study discusses the advantages and disadvantages of different cooling methods, as well as whether the temperature difference between the core and surface of the mass concrete after grouting meets regulatory requirements.

    摘要 I Extend Abstract II 致謝 V 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1研究動機與目的 1 1.2本文架構 1 第二章 文獻回顧 2 2.1巨積混凝土基本性質 2 2.1.1巨積混凝土結構特性 2 2.1.2巨積混凝土新拌溫度對溫升之影響 2 2.1.3巨積混凝土溫度控制措施 3 2.1.4巨積混凝土溫度應力類型 5 2.2混凝土熱傳導性質 5 2.2.1熱傳導性質 5 2.2.2熱傳導係數 5 2.2.3混凝土含水量對熱傳導之影響 5 2.2.4混凝土骨材熱傳導係數 6 2.2.5比熱 6 2.3溫度追蹤 6 2.3.1混凝土溫度監測 6 2.3.2監測方法 6 第三章 實驗方法 8 3.1實驗流程 8 3.2基本資料彙整 10 3.2.1混凝土材料參數 10 3.3.2環境參數 10 3.3混凝土廠內骨材性質檢驗 11 3.3.1骨材吸水率計算 11 3.4混凝土廠內降溫措施 12 3.4.1混凝土車車桶灑水降溫 12 3.4.2骨材庫噴霧系統架設 13 3.4.3拌合水加入冰塊 14 3.5現地混凝土澆置溫度量測 14 3.5.1混凝土澆置現場溫度監測設備之埋設 14 3.5.2測溫線配置圖 17 第四章 結果與討論 20 4.1混凝土溫升值實驗結果 20 4.2不同溫度的材料拌和結果 24 4.2.1固定骨材溫度 24 4.3混凝土廠廠內降溫措施降溫結果 28 4.3.1骨材庫架設噴霧 28 4.3.2冰塊水與純冰水 32 4.4實際出料數值 35 4.4.1 穩定混凝土廠各材料溫度 35 4.4.2 冰水池溫度落差 37 4.4.3實際降溫效果 38 4.4.4 2022/07/23心表溫度追蹤 39 4.4.5 2022/08/20心表溫度追蹤 40 4.5效益分析 42 4.5.1混凝土車車桶灑水降溫 42 4.5.2噴霧系統 42 4.5.3製冰機降溫 43 第五章 結論與建議 44 5.1結論 44 5.2建議 45 參考文獻 46

    [1] ACI Committee 116,2000, ACI 116R-00, Cementand Concrete Terminology American Concrete Institute, Farmington Hills, Mich.,73 pp.
    [2] ACI Committee 207,1996,Cracking of Massive Concrete(ACI207.2R-96),American concrete Institute,Farmington Hills, Mich.
    [3] Adek Tasri, Anita Susilawati,2019,Effect of cooling water temperature and space between cooling pipes of post-cooling system on temperature and thermal stress in mass concrete,journal of Building Engineering,Volume 24.
    [4] A.Konsta-Gdoutos,2009,Modeling the Heat of Hydration of Portland Cement",Cement and Concrete Research,Vol. 39,No. 2.
    [5] Braja M. Das.1993. Principles of Soil Dynamic. PWS-KENT.
    [6] B. Van der Veken and P. Bartos.,2003,Influence of Pre-cooling on the Rheological Properties of Fresh Concrete.,JACT.
    [7] Construction and Building Materials,2008,"The effect of aggregate type on the thermal conductivity of lightweight concrete" .
    [8] Copeland et al.,1956,“Porosity of Hardened Portland Cement Pastes” ,American Concrete Institute, Materials, 27, 633.
    [9] C.H. Han and Y. Choi ,2011"Experimental and analytical studies on the shear behavior of reinforced concrete deep beams with large web openings" Engineering Structures.
    [10] De Schutter. G. and L. Taerwe. 1996 "Estimation of Early-Age ThermalCreaking Tendecy of Massive Concrete Elements By Beans ofEquivalent Thickness." ACI Materials Journal. V93. No.5.
    [11] Ge Zhang, Guoxin Li,2016,Effects of mineral admixtures and additional gypsum on the expansion performance of sulphoaluminate expansive agent at simulation of mass concrete environment,Construction and Building Materials,Volume 113,Pages 970-978.
    [12] Hiwa Hamid, Mi G. Chorzepa,2020,Quantifying maximum temperature in 17 mass concrete cube specimens made with mixtures including metakaolin and/or slag,Construction and Building Materials,Volume 252.
    [13] Influence of Size and Construction Schedule of Massive Concrete Structures on Its Temperature Regime.
    [14] Inyeop Chu, Yun Lee, Muhammad Nasir Amin, Bong-Seok Jang, Jin-Keun Kim,2013,Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure,Construction and Building Materials,Volume 45,Pages 192-198.
    [15] J. Khatib,2002"Heat of Hydration of Portland Cement Paste Containing Mineral Admixtures",Cement and Concrete Research,Vol. 32,No. 12.
    [16] J. Stanton,1940,"Heat of Hydration of Portland Cement"Journal of the American Concrete Institute,Vol. 12,No. 3.
    [17] Ju-Hyung Ha, Youn su Jung, Yun-gu Cho,2014,Thermal crack control in mass concrete structure using an automated curing system,Automation in Construction,Volume 45,Pages 16-24.
    [18] J. Liu and J. Ma,2016,"Effect of aggregate size on the properties of high-strength concrete" ,Construction and Building Materials.
    [19] Kook Han Kin,Sang Eun Joen,Jin Keun Kim,Sungchul Yang,2002
    [20] K. W. Nasser and H. M. Marzouk. ,1979, Properties of Mass Concrete Containing Fly Ash at High Temperatures,Journal Proceedings, Volume: 76,Issue: 4,pages: 537-55.
    [21] Lerch, W., and C.L., Ford.,1994, Long-Time Study of Cement Performance in Concrete, ACI Journal, Proceedings V.44, No.8, pp.743-795 .
    [22] L. Zhang, Y. Liu, and X. Li,2019,“Experimental Study on the Pre-cooling of Concrete Using Liquid Nitrogen”, Journal of Thermal Science and Engineering Applications.
    [23] Maciej Batog,Zbigniew Giergiczny,2017,Influence of mass concrete constituents on its properties, Construction and Building Materials.
    [24] M.I.Khan, 2002, Factors affecting the thermal properties of concrete and applicability of its prediction models". Building and Environment.
    [25] M.Ben Ftima, J. Lemery,2021,Asymptotic fracture energy for nonlinear simulation of mass concrete structures,Construction and Building Materials,Volume 271.
    [26] M.A. Mansur,1980"Effect of Cooling and Curing on Thermal Stresses in Concrete Structures",Cement and Concrete Research,Vol. 10,No. 1.
    [27] M.A. Mansur,2004"Effect of Curing Methods on Thermal Stresses in Mass Concrete Structures"Cement and Concrete Composites,Vol. 26,No. 5.
    [28] M.S. Grewal,1994"Thermal Stresses in Massive Concrete Structures: Analysis and Prevention"Canadian Journal of Civil Engineering,Vol. 21,No. 3.
    [29] Sang-Lyul Cha, Seung-Seop Jin,2020,Prediction of thermal stresses in mass concrete structures with experimental and analytical results,Construction and Building Materials,Volume 258.
    [30] Swaddiwudhipong et al.,2002,“Simulation of the exothermic hydration of Portland Cement”, Advances in Cement Researches,Vol.14,No.2.
    [31] S. S. Chang, J. T. W. Yeung, and J. J. Y. Tan.,2009, “Pre-cooling of Concrete: A Literature Review”, Journal of Concrete Research.
    [32] S. Yang and J. Gao,2017,"Flexural behavior of large-scale high-strength concrete beams" Construction and Building Materials.
    [33] S.P. Shah ,1965"Analysis of Thermal Stresses in Massive Concrete Structures", Journal of the American Concrete Institute,Vol. 62,No. 11.
    [34] T.Y. Lo and S. Li, 2005"Structural behavior of high-strength concrete columns with large diameters" ,Engineering Structures.
    [35] V. M. Malhotra,1984, “Effect of Pre-cooling on Compressive Strength of Concrete” ACI Materials Journal.
    [36] Xiaochun Lu, Bofu Chen, Bin Tian, Yangbo Li, Congcong Lv, Bobo Xiong,2021,A new method for hydraulic mass concrete temperature control: Design and experiment,Construction and Building Materials,Volume 302.
    [37] X. Feng and J. Zhang, ,2014, "Mechanical properties of large-sized high-performance concrete" Construction and Building Materials.

    [38] Yunus Ballim.,2003,A numerical model and associated calorimeter for predicting temperature profiles in mass concrete, Cement and Concrete Composites.
    [39] YanyongXiang.,ZhiheZhang.,ShaohuiHe.,GangDong.,2005,Thermal-mechanical analysis of a newly cast concrete wall of subway structure, Tunnelling and Underground Space Technology.
    [40] Young-Ro Kim, Bae-Soo Khil, Seok-Joon Jang, Won-Chang Choi, Hyun-Do Yun,2015,Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete,Thermochimica Acta,Volume 613,Pages 100-107.
    [41] Yan Li, Lei Nie, Bo Wang,2014,A numerical simulation of the temperature cracking propagation process when pouring mass concrete,Automation in Construction,Volume 37,Pages 203-210.
    [42] Y. Zhao, X. Liu, and H. Du,2020, “Numerical Simulation of Pre-cooling of Mass Concrete with Liquid Nitrogen” Journal of Cold Regions Engineering.

    [43] 詹穎雯、廖同柏、林平全、鄭瑞濱、李銘智,2009,巨積混凝土基礎版專家系統 簡介與應用中興工程季刊.第 104 期.PP. 103-110。
    [44] 陳駟侑 2018,水泥膠結材料對巨積混凝土溫度控制之探討技師期刊第 80 期。
    [45] 陳俊村、黃兆龍、湛淵源,2015,卜作嵐材料對巨積混凝土水化溫度控制與工程 效益探討,技師期刊第 69 期。
    [46] 張林鳳,1995,「台灣地區混凝土橋梁溫度效應分析研究」,台灣大學土木工程所結構組。
    [47] 鄭瑞濱,2017,混凝土裂縫成因探討,混凝土科技 第十一卷 第三期。
    [48] 陳育聖、邱暉仁、張家豪、蔡宗和,2017,「新訂巨積混凝土施工綱要規範與溫 升量測技術」,混凝土科技第十一卷第四期。
    [49] 朱柏芳,1999,「大體積混凝土溫度應力與溫度控制心,中國電力出版社。
    [50] 黄兆龍,高性能混凝土理論與實務,詹氏書局。
    [51] 台灣電力公司,1987,翡翠水庫工程竣工報告,中興工程顧問
    [52] 廖同柏,2004,台灣地區巨積混凝土工程實務之探討,中興工程,第61期。
    [53] 馮乃謙,混凝土實用大全,科學出版。
    [54] 湛淵源,2016,技師期刊第 73 期 巨積(大體積)混凝土的溫控計畫。
    [55] 中國水利水電科學研究院結構材料研究所,1989,大體積混凝土,中國水利電力出版社,中國大陸。
    [56] 王得安、李佳澤、許祐銓(劉玉雯指導) 2017,緩凝劑對混凝土水化熱之影響,國 立嘉義大學土木與水資源工程學系 106 學年度專題報告。
    [57] 侯威銘,1996,土木工程材料學精要,文笙書局。
    [58] 高健章,1990,溫度對混凝土水化反應機理與力學行為之影響,台灣營建研究院。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE