| 研究生: |
翁俊鴻 Weng, Chun-Hung |
|---|---|
| 論文名稱: |
豪雨期間集水區細粒沉滓對廣水域底床演變之影響 The effect of fine sediments from watersheds on bed evolution of the wide water region during storms |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng 蔡長泰 Tsai, Chang-Tai |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 細粒沉滓 、地文性土壤沖淤模式 、沖積河流動床二維模式 、廣水域地形變遷模式 、底床演變 |
| 外文關鍵詞: | fine sediment, physiographic soil erosion-deposition model(PSED), alluvial river-movable bed two dimensional model(ARMB-2D), wide water region erosion-deposition model(WWRED), bed evolution |
| 相關次數: | 點閱:158 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究定義水深遠小於平面縱橫尺度的水域為廣水域。河水流入水庫湖泊、河口海域以及氾濫於洪水平原的流動行為均為廣水域中之河水流動現象。這些廣水域與生活環境相關。本文旨在研究渾濁河水在廣水域中的沖淤引起的地形演變,以應用於調適生活環境。
集水區地表土壤之組成以細粒沉滓為主,細粒沉滓依粒徑大小可分為粘性沉滓及非粘性沉滓。豪雨期間河水渾濁,主要來自於逕流沖蝕並捲入水中之集水區地表土壤。因細粒沉滓易捲入水中,故在河流中上游底床之含量甚少,但細粒沉滓受河水輸運至水庫庫區、河口海域及洪氾平原等廣水域時,流速變緩甚或停滯,細沉滓載會在庫區、河口或洪氾區產生落淤,形成不平衡的沉滓輸運現象。本研究將研發可分析廣水域不平衡沉滓輸運現象的數學模式。
豪雨期間進入廣水域之水流及細粒沉滓來自於豪雨在廣水域上游集水區造成之逕流歷線及產砂歷線。雖有歷史觀測資料可推估逕流攜運之產砂資料,但因為是多次量測之平均現象,不適宜應用於重大豪雨事件之產砂歷線。本研究發展整合地文性土壤沖淤模式(PSED)與沖積河流動床二維模式(ARMB-2D)成為廣水域地形變遷模式,兩模式間之耦合資料為逕流歷線及產砂歷線,以分析豪雨期間之集水區產生之細粒沉滓及隨河水流入對廣水域之不平衡運移現象,及對底床沖淤演變之影響。
本文先以沖積河流動床二維模式擬二仁溪河口海域中水工結構物對廣水域地形變遷之影響,並與水工模型試驗比較,以驗証沖積河流動床二維模式之可靠度。應用地文性土壤沖淤模式演算淡水河流域(非粘性沉滓)及阿公店水庫集水區(粘性沉滓)豪雨期間集水區之逕流歷線及細粒沉滓產砂歷線,結合沖積河流動床二維模式分析淡水河河口海域及阿公店水庫廣水域底床演變。
經以本研究發展廣水域地形變遷模式,應用於二仁溪河口海域、淡水河下游水域及阿公店水庫集水區等實際案例,分析討論演算結果可知:
1.地文性土壤沖蝕模式可演算豪雨期間,流入廣水域之洪水及挾運之沉滓,沖積河流動床二維模式可用於模擬廣水域中之二維水理現象、沉滓運移及底床地形變遷現象,整合地文性土壤沖淤模式及沖積河流動床二維模式之廣水域地形變遷模式,可模擬廣水域在豪雨期間之地形變遷。
2.集水區產砂進入廣水域時因受潮汐(河口海域)及固體邊界(水庫大壩)影響,流入廣水域之泥砂大部分被拘束在廣水域中。水中沉滓除了部分因潮汐漲退及溢洪管排出外,大部分皆蓄存於廣水域中。除河口海域等區域因潮汐的漲退會持續帶走細粒沉滓外,水庫因水位低於溢洪管而使全部沉滓淤積於庫區,由此結果可知集水區產出之細粒沉滓對廣水域地形變遷有很大的影響。
3.進入廣水域之入流量及入流濃度由於河道與廣水域之銜接點地形不均勻,入流量之分配會隨地形改變,亦導致入流濃度分佈不均勻,此結果影響廣水域懸浮載濃度之空間分佈。而尖峰懸浮載濃度發生時間與尖峰流量發生時間並不一致,平均而言,尖峰濃度歷線發生於尖峰流量之前,此結果亦影響廣水域懸浮載濃度之時間分佈。
4.由廣水域地形變遷模式應用於改善河口淤積(二仁溪河口)及水庫淤積(阿公店水庫)之模擬結果,可知廣水域地形變遷模式具分析佈置水工結構物影響之能力,可提供相關單位於工程規劃中參考。
The main component of the watershed surface is fine sediment. Fine sediment is distinguished into non-cohesive and cohesive by the size. The sediment load in the river is coming from the erosion of the watershed surface during the storm. Fine sediment could be entrained easily into water, so it makes up a very small part, usually a few percent, of the sediment on the bed. Sediment load might be silted when they are transported into the wide water region including the reservoir or the estuarine or flood plain. Therefore, the affect of fine sediment in the wide water region is very important.
The hydrograph of the flow and sediments in the period of storm are not easy gathered. The estimation of flow and sediments is from the regression of the measured data. The phenomenon of the average events is not enough to determine the amount of the flow and sediments during the storm. Therefore, the mathematic model is developed in order to simulate the transport of the flow and sediment in the period of the storm.
The purpose of this study is to develop the wide water region erosion-deposition model that can be accurately applied for estuarine, reservoirs and flood plain, which will be established based on both the physiographic soil erosion-deposition model (PSED model) and the alluvial river-movable bed two dimensional model (ARMB-2D). The result is able to provide us to assess the phenomenon of erosion and deposition in estuarine, reservoirs and flood plain during the period of storm.
1. 中興工程科技研究發展基金會,(2003),「水利工程之泥沙問題」,研究報告(SFRDEST R-03-HY-01-13),台北。
2. 土木工程系土壤試驗室,(1987),「西南部青灰泥岩地區水庫淤積對策之研究(一)─阿公店水庫鑽探及土壤試驗報告書」,國立成功大學。
3. 王紹成,虞和瑩,(1991),「河流動力學」,人民交通出版社,新華書店,北京。
4. 台灣省水利局,(1977),「濁水溪研究與水工模型試驗第二期計畫報告」,台灣省水利叢刊之一二七,水工模型研究報告第四號。
5. 白進忠,(2003),由懸浮載量值堆算底床載之研究,國立成功大學水利及海洋工程研究所碩士論文。
6. 交通大學土木工程研究所,(1994),「河道輸砂數值模式之評估研究 (IV)」,經濟部水資源統一規劃委員會研究報告,第83EC2A371001 號。
7. 何智武,(1984),「臺灣河川上游集水區之泥砂來源與控制」,中華水土保持學報,第十五卷,第一期,第 15-25 頁。
8. 何興亞,(1987),彎曲定岸河道水理特性與床形變化之研究,國立台灣大學土木工程研究所博士論文。
9. 吳建民,林襟江,周克魯,吳鵬飛, (1975),「河川泥砂移動性之研究」,經濟部水資會水工試驗室研究報告。
10. 吳瑞濱,(1993),二維河川水流與泥砂沖淤模擬之研究,國立台灣大學農業工程學研究所碩士論文。
11. 吳嘉俊,(1998),「修正版通用土壤流失公式(RUSLE)簡介」,水與土通訊,第27-30期。
12. 吳嘉俊、盧光輝、林俐玲,(1996),「通用土壤流失量估算手冊」,國立屏東技術學院。
13. 吳藝昀,(2004), 台灣天然雨滴粒徑分佈及年等降雨沖蝕指數圖之修訂,國立中興大學土木工程研究所碩士論文。
14. 李俊霖,(1996),以有限體積法模擬複式渠道水流之研究,國立成功大學水利及海洋工程研究所碩士論文。.
15. 李振豪,(2004),淡水河上游流量對潮汐傳播之影響,國立臺灣大學環境系統工程學研究所碩士論文。
16. 林延郎,(1991),沉滓級配對彎道床形與床質分佈影響之研究,國立台灣大學土木工程學研究所博士論文。
17. 林凱文,蔡智恆,蔡長泰,(1996),「分段演算法於二維變量流及底床演變模擬之應用」,中華民國力學學會第二十屆全國力學會議論文集,第576-583頁。
18. 林鈺敦,(1999),可蘭數對馬科馬可二維沖淤模式之發展與應用,國立成功大學水利及海洋工程研究所碩士論文。
19. 林鈺敦、蔡智恆、蔡長泰,(1999),「MacCormack顯式法中人工滯性項之探討」,第十屆水利工程研討會論文集,第D80-D87頁。
20. 林銘崇,(1989),「淡水河系河床穩定性與河口地形變化之研究」,台大水工試驗所,台北。
21. 林銘崇、莊文傑,(1985),「濁水溪河口海岸地形變化之數值模擬」,台灣水利季刊,第三十三卷,第三期,第13-23頁。
22. 胡通哲、葉明峰,(2004),「基隆圓山子至八堵河段環境基流量之研究」,中華水土保持學報,第三十五卷,第三期,第 229-239頁。
23. 胡蘇澄、盧昭堯、吳益裕、陳台芳,(1995),「台灣中部蓮華池地區高黏土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第十卷,第一期,第 33-40頁。
24. 苟淵博、林佑輔,(1971),「淡水河污染散佈實地研究」,中國水利工程學會會刊,復刊第十三期,第18-30頁。
25. 馬明明,(1995),台灣中部與台北地區降雨特性及沖蝕性關係之研究,碩士論文,國立中興大學土木工程研究所,台中。
26. 張明明,(1991),非均勻沉滓動床之沖降模擬,國立成功大學水利及海洋工程研究所碩士論文。
27. 張海燕,(1990),「河流演變工程學」,科學出版社,新華書店,北京。
28. 張凱堯,蔡智恆,蔡長泰,(1996),「卡氏座標系與正交曲線座標系之彎道二維變量流模式之比較」,中華民國力學學會第二十屆全國力學會議論文集,第568-575頁。
29. 張瑞瑾,謝鑒衡,王明甫,黃金堂,(1988),「河流泥沙動力學」,水利電力出版社,武漢水利電力學院。
30. 清水康行,板倉忠興,(1986),「沖積河川二維性流況之河床變動計算」,北海道開發局土木試驗所,北海道。
31. 許時雄,(1969),「淡水河下游感潮變量流之研究」,水利復刊第七期,第84-123頁。
32. 許泰文,(2003),「近岸水動力學」,中國土木水利工程學會,第273-286頁。
33. 許泰文、張憲國,(2001),永續的鑽石海岸,經濟部水資源局出版。
34. 連和政,(1999),二維水深平均模式應用於彎道水流與泥沙運移模擬之研究,國立交通大學土木工程研究所博士論文。
35. 郭惠貞,(1994),複式河槽非均質底床演變模式之研究,國立成功大學水利及海洋工程研究所碩士論文。
36. 陳金諾,(2006),洪水對河道沖淤及棲地影響之研究,博士論文,國立成功大學水利及海洋工程研究所,台南。
37. 陳偉柏,(2004),淡水河口與近海三維水動力模式之模擬與應用,國立中央大學水文所碩士論文。
38. 陳樹群、賴益成,(2004),水庫集水區土砂評量與整治率評估模式,中華水土保持學報,第三十五卷,第一期,第 53-67 頁。
39. 陳樹群、簡如宏、馮智偉、巫仲明,(1998),「本土化土壤沖蝕指標模式之建立」,中華水土保持學報 29 (3),pp.233-247。
40. 陳薔諾、蔡智恆、蔡長泰,(2004),「集水區地文性土壤沖淤模式與地理資訊系統結合應用之研究」,中國土木水利工程學刊,第五十一卷,第一期,第 379-391頁。
41. 黃良雄,(2007),「台北港設置後對淡水河口海岸地形變遷之影響(2/2)」,經濟部水利署第十河川局,台北。
42. 黃孟竹,(1995),複式河槽非均質底床之數值模擬,國立成功大學水利及海洋工程研究所碩士論文。
43. 黃國文,(1995),以有限體積法模擬彎道水流之研究,國立成功大學水利及海洋工程研究所碩士論文。
44. 楊昌儒,(2000),地文性淹水預報系統建構之研究,博士論文,國立成功大學水利及海洋工程研究所,台南。
45. 楊錦釧,(1989),「沖積河川非均勻質漂砂輸送之數值模擬」,行政院國家科學委員會防災科技研究報告,第78-01號。
46. 楊錦釧,(2001),阿公店水庫防淤策略研究,經濟部水利處南部水資源局研究成果報告。
47. 經濟部水利署水利規劃試驗所,(2005),「水庫水理、水質、泥沙量測及運移機制分析」,研究報告,台中。
48. 經濟部水利署水利規劃試驗所,(2005),「水庫水理、泥砂量測及運移機制分析」,台中。
49. 經濟部水利署水利規劃試驗所,(2005),「都市河川復育之研究」,台中。
50. 經濟部水利處第六河川局,(2003),「二仁溪下游段治理規劃檢討報告(河口—縱貫鐵路橋)」,經濟部水利署。
51. 經濟部水利署第六河川局,(2003),「台南海岸觀測調查分析」。
52. 葉正旭,(2002),山區集水區水理特性之模擬,碩士論文,國立成功大學水利及海洋工程研究所,台南。
53. 葉克家,(1995),「非均勻沉滓多方式輸砂模式」,河川輸砂模式講習班講義,國立交通大學土木系。
54. 葉克家,楊錦釧,(1995),「河川彎道動床數值模式之發展應用研究」,國立交通大學土木工程研究所,中興工程科技研究發展基金會研究報告,第SFRDEST R-95-HY-01-6號。
55. 詹益京,(1990),二維邊界符合座標明渠紊流之數值模擬,國立成功大學水利及海洋工程研究所碩士論文。
56. 劉景毅,(1999),「二維三維水理數值模式在淡水河河口海域之應用與比較」,中國土木水利工程學刊,第十三卷,第三期,第579-587頁。
57. 歐陽嶠暉,(1971),「淡水河水系水污染調查及河川自淨能力之研究」,台灣水利,第十九卷,第三期,第67-77頁。
58. 蔡長泰,(1981),沖積河川變量流之模擬,國立成功大學土木工程研究所博士論文。
59. 蔡長泰,俞德忠,(1991),「彎曲渠道之水流模擬」,中華民國力學學會第十五屆全國力學會議論文集,第281-288頁。
60. 蔡長泰,蔡智恆,(1996),「平衡狀態含沙水流之流速與濃度分佈」,第八屆水利工程研討會論文集,第585-592頁。
61. 蔡長泰、蔡智恆,(1997),「梯形寬頂堰堰流公式適用性之研究」,台灣水利季刊,第四十五卷,第二期,第29-45頁。
62. 蔡智恆,(2000),定岸沖積河流水理及底床演變之模擬,博士論文,國立成功大學水利及海洋工程研究所,台南。
63. 蔡智恆,高偉騰,蔡長泰,(1998),「二維沖積河流底床演變分段分離演算模式之研究」,中華民國力學學會期刊,第十四卷,第二期,第109-124頁。
64. 蔡智恆,蔡長泰,(1995),「彎道二維緩變量流之模擬」,中國土木水利工程學刊,第七卷,第四期,第 461-473頁。
65. 黎明工程顧問股份有限公司,(2008),「烏山頭水庫南幹線曾文溪等三座渡槽改建規劃」,嘉南農田水利會。
66. 盧之偉、蔡智恆、蔡長泰,(1998),「顯式有限差分法應用於平面二維變量流之模擬」,中華民國力學學會第二十二屆全國力學會議論文集,第387-394頁。
67. 錢寧,萬兆惠,(1991),「泥沙運動力學」,第三版,科學出版社,新華書店,北京。
68. 謝正倫,(2002),「流域土砂管理模式之研究(3/4)」,經濟部水利署。
69. 謝正倫、曾志民、許泰文,(1995),「濁水溪河口海岸地形變化之數值模擬」,台灣水利季刊,第四十三卷,第四期,第49-68頁。
70. 簡仲和、蔡長泰、蔡智恆、郭晉安、黃建維,(2005),「台南高雄海岸復育研究」,經濟部水利署第六河川局。
71. 顏清連,何興亞,(1992),「水庫對下游彎道床形與床質級配之影響研究(三)」,行政院國家科學委員會專題研究報告,台大水工所。
72. 顏清連,李鴻源,張守陽,(1990),「沖積河流之沖淤力學與數值模擬~以濁水溪為應用對象(III)」,行政院國家科學委員會防災科技研究報告,第78-64號。
73. Akanbi, A. A. and Katopodes, N. D., (1988),"Model for Flood Propagation on Initially Dry Land,"Journal of Hydraulic Engineering, Vol. 114, No. 7, pp. 689-706.
74. Ambrosi, D., (1995),"Approximation of Shallow Water Equations by Roes Riemann Solver,"International Journal For Numerical Method in Fluids, Vol. 20, pp. 157-168.
75. Ariathurai, R. (1980). Erosion and Sedimentation Downstream from Harry S. Truman Dam as a Result of Hydropower Operations, Corps of Eng., Kansas City, MO.
76. Ariathurai, R. and Arulanandan, K., (1978), "Erosion rates of cohesive soils," Journalof the Hydraulics Division, ASCE, Vol. 104, No. HY2, pp. 279-283.
77. Arulanandan, K., P. Loganathan, et al., (1975), "Pore and eroding fluid influences on surface erosion on soil." Journal of the Geotechnical Engineering Division 101(1): 51-66..
78. Bai, Y.C., Wang, Z.Y., and Shen, H.T., (2003), "Three-dimensional modelling of sediment transport and the effects of dredging in the Haihe Estuary," Estuarine Coastal and Shelf Science, Vol. 56, No. 1, pp. 175-186.
79. Berlamont, J., M. Ockenden, et al., (1993), "The characterisation of cohesive sediment properties." Coastal Engineering 21(1-3): 105-128.
80. Bridge, J. S., (1992),"A Revised Model for Water Flow, Sediment Transport, Bed Topography and Grain Size Sorting in Natural River Bends,"Water Resources Research, Vol. 28, No. 4, pp. 999-1013.
81. Burban, P. Y., Y. J. Xu, et al., (1990) "SETTLING SPEEDS OF FLOCS IN FRESH-WATER AND SEAWATER." Journal of Geophysical Research-Oceans 95(C10): 18213-18220.
82. C. Migniot, (1990), "A study of the physical properties of various forms of very fine sediments and their behaviour under hydrodynamic action", La Houille Blanche 7 pp. 591–620. (1968).
83. Chang, H. H.,"Generalized Computer Program FLUVIAL-12 Mathematical Model for Erodible Channels,"April.
84. Chaudhry, M. H., (1993), Open-Channel Flow, Prentice Hall, Englewood Cliffs, New Jersey.
85. Chen, C. N., Yeh, C. H., Tasi, C. H. and Tasi, C. T., (2002)," The simulation of 256 disharge and suspended sediment concentration hydrographs in river basin," Proceeding of the 5th Taiwan-Japan Joint Seminar on Natural Hazards Mitigation, Tainan, Taiwan, pp. 99-108.
86. Chow, V. T., Maidment D. R. and Mays, L. W., (1988), Applied Hydrology, McGraw-Hill, United States, pp. 153-155.
87. Cole, P and Miles, G. V., (1983)," Two-Dimensional model of mud transport, "Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 1, pp. 1-12.
88. Coleman, N. L., (1970),"Flume Studies of the Sediment Transfer Coefficient,"Water Resources Research, Vol. 6, No. 3, pp. 801-809.
89. Cunge, J. A., (1980), "Unsteady Flow in Open Channel," Water Resources Publishing Limited, London, pp.705-762.
90. Dammuller, D. C., Bhallamudi, S. M. and Chaudhry, M. H., (1989),"Modeling of Unsteady Flow in Curved Channel,"Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1479-1495.
91. Douillet, P., Ouillon, S., and Cordier, E., (2001), "A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia," Coral Reefs, Vol. 20, No. 4, pp. 361-372.
92. Dunn, I. S., (1959), "Tractive Resistance of cohesive Channels", Proc. ASCE, No. SM3, p.p. 1~24.
93. Dyer, K. R., (1989), "SEDIMENT PROCESSES IN ESTUARIES - FUTURE-RESEARCH REQUIREMENTS." Journal of Geophysical Research-Oceans 94(C10): 14327-14339..
94. Dyer, K.R., (1977), "Lateral circulation effects in estuaries.", In Estuaries, Geophysics and the Environment, National Academic of Sciences, Washington.
95. Elliott, A.J., (1978), "Observations of the meteorological induced circulation in the Potomac Estuary," Estuarine and Coastal Marine Science, Vol. 6, pp. 285-299.
96. Garcia, M., (2008), Sedimentation engineering: processes, measurements, modeling, and practice, American Society of Civil Engineers.
97. Guan, W.B., Wolanski, E., and Dong, L.X., (1998), "Cohesive sediment transport in the Jiaojiang River estuary, China," Estuarine Coastal and Shelf Science, Vol. 46, No. 6, pp. 861-871.
98. Guan, W.B., Wolanski, E., and Dong, L.X., (1998),"Cohesive sediment transport in the Jiaojiang River estuary, China," Estuarine Coastal and Shelf Science, Vol. 46, No. 6, pp. 861-871.
99. Haas, L.W., (1977), "The effect of spring-neap tidal cycle on the vertical salinity structure of the James," Estuarine, Coastal Shelf Science, Vol. 5, pp. 485-496.
100. Hansen, D.V., and Rattray, J.M., (1965), "Gravitational circulation in straits and estuaries," Journal of Marine Research, Vol. 23, pp. 104-122.
101. Havis, R. N., Alonso, C. V. and King, J. G., (1996),"Modeling Sediment in Gravel-Bedded Streams Using HEC-6,"Journal of Hydraulic Engineering, Vol. 122, No. 10, pp. 559-564.
102. Holly, F. M. and Karim, M. F., (1983),"Computer Simulation Prognosis for the Degradation of the Missouri River Between Gavins Point Dam and Iowa's Southern Border,"Iowa Institute of Hydraulic Research, No. 267, The University of Iowa.
103. Ianuiello, J.P., (1977),"Tidally induced residual currents in estuaries of constant breadth and depth," Journal of Marine Research, Vol. 35, pp. 735-786.
104. Ippen, T., and Harleman, D.R.F., (1966), "Tidal dynamics in estuaries.", In: Estuary and Coastal Hydrodynamics, McGraw-Hill, New York, pp. 493-545.
105. Itakura, T., Kishi, T., (1980),"Open channel flow with suspended sediments," Journal of the Hydraulics Division, ASCE, Vol. 106, No. HY8, pp. 1325-1343.
106. Jameson, A., Schmidt, W., and Turkel, E., (1981),"Numerical Solutions of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes,"AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259
107. Jiang, J. H. and A. J. Mehta., (2000), "Lutocline behavior in high-concentration estuary." Journal of Waterway Port Coastal and Ocean Engineering-Asce 126(6): 324-328..
108. Kamphuis, J. W.,(1983), "Cohesive Material Erosion by Unidirectional Current.", Journal of Hydraulics Division, ASCE, Vol. 109, No. 1, p.p. 49-61.
109. Karim, M. F. and Kennedy, J. F., (1982), "IALLUVIAL: A Computer-Based Flow and Sediment Routing Model for Alluvial Streams and its Application to the Missouri River," Iowa Institute of Hydraulic Research, Report No. 250, The University of Iowa.
110. Keulegan, G.H., (1966), “The mechanism of an arrested saline wedge.", In: Estuary and Coastal Hydrodynamics, McGraw-Hill, New York, pp. 546-574.
111. Komura, S. and Simons, D. B., (1967),"River Bed Degradation Below Dam,"Journal of Hydraulic Division, Vol. 93, No. HY4, pp. 1-14.
112. Kranenburg, C., (1994), "The Fractal Structure of Cohesive Sediment Aggregates." Estuarine Coastal and Shelf Science 39(5): 451-460.
113. Krone, R.B., (1963), "A study of theological properties of estuarial sediments", Report No. 63-8, Hydraulic Engineering Laboratory and Sanitary Engineering Laboratory, University of California, Berkeley.
114. Krone, R.B., (1962), "Flume studies of the transport of sediment in estuarial shoaling processes", Report, Hydraulic Engineering Laboratory and Sanitary Engineering Laboratory, University of California, Berkeley.
115. Lai, C. T., (1988), "A Numerical Scale Model for Simulating Unsteady Alluvial-Channel Flow,"Twelve Selected Computer Stream Sedimentation Models Developed in the United States, Edited by Fan, S. S., Federal Energy Regulatory Commission, pp. 189-260.
116. Lau, Y. L. and B. G. Krishnappan (1992), "SIZE DISTRIBUTION AND SETTLING VELOCITY OF COHESIVE SEDIMENTS DURING SETTLING." Journal of Hydraulic Research 30(5): 673-684.
117. Lau, Y. L. and B. G. Krishnappan, (1994),"DOES REENTRAINMENT OCCUR DURING COHESIVE SEDIMENT SETTLING." Journal of Hydraulic Engineering-Asce 120(2): 236-244..
118. Leonor, C., and Ramiro, N., (1999),"Hydrodynamic and sediment suspension modeling in estuarine systems. Part I: Description of the numerical models," Journal of Marine Systems, Vol. 22, pp. 105-116.
119. Lick, W., (2001),"ENTRAINMENT, DEPOSITION, AND TRANSPORT OF FINE-GRAINED SEDIMENTS IN LAKES." Hydrobiologia 91-2(JUL): 31-40.
120. Lick, W. and J. McNeil, (1982), "Effects of sediment bulk properties on erosion rates.", Science of the Total Environment, 266, pp. 41-48.
121. Lick, W., J. Lick, et al., (1992), "FLOCCULATION AND ITS EFFECT ON THE VERTICAL TRANSPORT OF FINE-GRAINED SEDIMENTS." Hydrobiologia 235: 1-16.
122. Mahmood, K. and Yevjevich, V., (1975), Unsteady Flow in Open Channel, Vol. 1, Water Resources Publications, Fort Collins, Colorado.
123. Manning, A. J., P. L. Friend, et al., (2007), "Estuarine mud flocculation properties determined using an annular mini-flume and the LabSFLOC system." Continental Shelf Research 27(8): 1080-1095.
124. Mathijs Van Ledden, (2002), "A process-based sand-mud model", in J.C. Winterwerp and C.Kranenburg, Fine Sediment Dynamics in the Marine Environment, Proceedings in Marine Science, Vol 5, Elsevier, Amsterdam,577-594.
125. McAnally, W., (1999), "Aggregation and deposition of estuarial fine sediment", Storming Media.
126. Meakin, P.,(1988) , "Fractal aggregate", Adv. Colloid Interface Sci. 28, 249-331.
127. Mehta, A. J., Hayter, E. J., Parker, W. R., Krone, R. B. and Teeter, A. M., (1989). "Cohesive sediment transport I: process description," Journal of Hydraulic Engineering, Vol. 115, No. 8, pp. 1076-1093.
128. Mehta, A. J., and Partheniades, E., (1975), "An investigation of the depositional properties of flocculated fine sediments," Journal of Hydraulic Research, ASCE, Vol. 13, No. 4, p.p. 361-381.
129. Meyer, L. D., (1981), "How rain intensity affects interrill erosion," Transactions, ASAE, pp. 1472-1475.
130. Molls, T., and Chaudhry, M. H., (1995), "Depth-Averaged Open-Channel Flow Model,"Journal of Hydraulic Engineering, Vol. 121, No. 6, pp. 453-465.
131. Molls, T., Chaudhry, M. H. and Khan, K. W., (1995), "Numerical Simulation of Two-Dimensional Flow near A Spur-Dike,"Advances in Water Resources, Vol. 18, No. 4, pp. 227-236.
132. Migniot C, (1989), "Bedding-down and rheology of muds". La Houille Blanche 1:11–29, 2:95–111 (in French).
133. Mulder, H.P.J., and Udink, C., (1991), "Modelling of cohesive sediment transport. A case study: the Western Scheldt Estuary," Proceedings of the 22nd International Conference on Coastal Engineering. American Society of Civil Engineers, New York, pp. 3012–3023.
134. Mutchler, C.K. and Young, R.A., (1975), " Soil detachment by raindrops," Proceedings of sediment-yield workshop, ARS-S-40, USDA.
135. Nelson, J. M., (1988), "Mechanics of Flow and Sediment Transport over Nonuniform Erodible Beds,"Ph. D. thesis, University of Washington.
136. Nishimura, H., (1982), "Numerical simulation of nearshore circulations.", Proceeding of the 29th Japanese Coference on Coastal Engineering, Sendai, JSCE, p.p. 333-337. (in Japanese)
137. Odd, N.V.M., and Owen, M.W., (1972), "A two-layer model of mud transport in the Thames estuary," Proceedings, Institution of Civil Engineers, London, pp. 175–205.
138. Odgaard, A. J., " River-Meander Model. I: Development, (1989a), "Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1433-1450.
139. Odgaard, A. J., (1984), "Flow and Bed Topography in Alluvial Channel Bend,"Journal of Hydraulic Engineering, Vol. 110, No. 4, pp. 521-535.
140. Odgaard, A. J., (1989b), "River-Meander Model. II: Applications,"Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1451-1464.
141. Otsubo, K. and K. Muraoka, (1988), "CRITICAL SHEAR-STRESS OF COHESIVE BOTTOM SEDIMENTS." Journal of Hydraulic Engineering-Asce 114(10): 1241-1256.
142. Otsubo, K. and K. Muraoka, (1988), "CRITICAL SHEAR-STRESS OF COHESIVE BOTTOM SEDIMENTS." Journal of Hydraulic Engineering-Asce 114(10): 1241-1256.
143. Ozturgut, E. and J. W. Lavelle, (1986), "SETTLING ANALYSIS OF FINE SEDIMENT IN SALT-WATER AT CONCENTRATIONS LOW ENOUGH TO PRECLUDE FLOCCULATION." Marine Geology 69(3-4): 353-362.
144. Parchure, T. M. and Mehta, A. J., (1985), "Erosion of soft cohesive sediment deposits," Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 10, pp. 1308-1326.
145. Park, K., and Kuo, A.Y., (1992), "A vertical two dimensional model of estuarine hydrodynamics and water quality," Special report in applied marine science and ocean engineering, No. 321, school of marine science, Virginia institute of marine, college of William and Mary.
146. Parker, G., (1990b), "Surface-Based Bedload Transport Relation for Gravel Rivers,"Journal of Hydraulic Research, Vol. 20, No. 4, pp. 417-436.
147. Parker, G., (1990a), "The ACRONYM Series of Pascal Programs for Computing Bedload Transport in Gravel Rivers,"Saint Anthony Falls Hydraulic Laboratory, No. M-220, The University of Minnesota.
148. Partheniades, E., (1965), "Erosion and Deposition of Cohesive Soils", Journal of Hydr. Div., Proc. ASCE, Vol. 91, No. HY1, Proc. Paper 4204.
149. Partheniades, E., (1962), A study of erosion and deposition of cohesive soils in salt water, University of California, Berkeley.
150. Patankar, S. V., (1980), Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, pp. 81-120
151. Pritchard, D. W., (1956)¸ "The dynamic structure of a coastal plain estuary," Journal of Marine Research, Vol. 15, No. 1, pp. 33-42.
152. Pritchard, D.W., (1954), "A study of the salt balance in a coast plain estuary," Journal of Marine Research, Vol. 13, No. 1, pp. 133-144.
153. Pritchard, D.W., (1952), Estuarine Hydrography. In: Advances in Geophysics, Vol. 1, Academic Press Inc., New York, pp. 243-280.
154. Raudkivi, A. J. and Tan, S. K., (1984), "Erosion of Cohesive Soil.", Journal of Hydraulic Engineering, Vol. 22, No. 4, p.p. 217-233.
155. Roache, P. J., (1972), Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, New Mexico.
156. Robert, R.P., (1979), "Chase, Settling Behavior of Natural Aquatic Particulates" , Limnology and Oceanography, Vol. 24, No. 3 (May,), pp. 417-426.
157. Roe, P. L., (1981), "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,"Journal of Computational Physics, Vol. 43, pp. 357-372.
158. Scott, K.J., (1984), "Hindered settling of a suspension of spheres. Critical evaluation of equations relating settling rate to mean particle diameter and suspension concentration." CSIR Report CENG 497. Petoria, South Africa: Chemical Engineering Research Group, Council for Scientific and Industrial Research.
159. Sharma, P. P., Gupta, S. C. and Foster, G. R., (1995), "Raindrop-induced soil detachment and sediment transport from interrill areas," Soil Science Society America Journal, Vol. 59, pp. 727-734。
160. Shettar, A. S. and Murthy, K. K. , (1996), "A Numerical Study of Division of Flow in Open Channel,"Journal of Hydraulic Research, Vol. 34, No. 5, pp. 651 – 675.
161. Shimizu, Y. and Itakura, T., , "Calculation of Bed Variation in Alluvial Channels,"Journal of Hydraulic Engineering, Vol. 115, No. 3, pp. 367-384.
162. Shimizu, Y., Yamaguchi, H. and Itakura, T., (1990), "Three-Dimensional computation of flow and bed deformation," Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 9, pp. 1090-1108.
163. Simons, D. B. and Senturk, F., (1977), "Sediment Transport Technology,"Water Resources Publications, Colorado, U.S.A.
164. Simons, D. B., Chen, Y. H. and Ponce, V. M., (1979), "Development of a Two-Dimensional Water and Sediment Routing Model and its Application to Study Lower Pool 4 in the Upper Mississippi River System. Vol. I: Model Development and Calibration".
165. Smerdon, E. T., and Beasley, R. R.,(1961), "Critical Tractive Forces in Cohesive Soils.", Agriculture Engineering, St. Joseph, Mich., Vol. 42, p.p. 26~29.
166. Smith, J. D. and McLean, S. R., (1984), "A Model for Flow in Meandering Streams,"Water Resources Research, Vol. 20, No. 9, pp. 1301-1315.
167. Spasojevic, M. and Holly, F. M., (1988), "Numerical Simulation of Two-Dimensional Deposition and Erosion Patterns in Natural Water Bodies,"IIHR Report No. 149, University of Iowa.
168. Spekreijse, S. P., (1988), "Multigrid Solution of Steady Euler Equations,"CWI Tract 46, Center for Mathematics and Computer Science, Amsterdam, The Netherlands.
169. Steger, J. L. and Warming, R. F., (1981), "Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite-Difference Methods,"Journal of Computational Physics, Vol. 40, pp. 263-293.
170. Struiksma, N., Olesen, K. W., Flokstra, C. and de Vriend, H. J., (1985), "Bed Deformations in Curved Alluvial Channels,"Journal of Hydraulic Research, Vol. 23, No. 1, pp. 57-79.
171. Tan, W., (1992), "Shallow Water Hydrodynamics - Mathematical Theory and Numerical Solution for a Two-Dimensional System of Shallow Water Equations", Elsevier, Amsterdam, The Netherlands.
172. Tasi, C. H. and Tasi, C. T., (2000), "Velocity and concentration distributions of sediment-laden open channel flow, " Journal of the American Water Resources Association, Vol. 36, No. 5, pp. 1075-1086.
173. Taylor, C. and Hughes, T. G., (1981), Finite Element Programming of the Navier-Stokes Equations, Pineridge Press Ltd..
174. Teeter, A., (2001), "Clay-silt sediment modelling using multiple grain classes. Part II: Application to shallow water resuspension and deposition." Coastal and Estuarine Fine Sediment Processes, ed. WH McAnally and AJ Mehta, Elsevier, Proceedings in Marine Science 3: 173-185..
175. Teisson, C., (1991), "Cohesive suspended sediment transport: feasibility and limitations of numerical modeling," Journal of Hydraulic Research, Vol. 29, pp. 755-769.
176. Teisson, C., (1991), "Cohesive Suspended Sediment Transport: Feasibility and Limitations of Numerical Modeling,"Journal of Hydraulic Research, Vol. 29, No. 6, pp. 755-769.
177. Thomas, W. A. and McAnally, W. H. Jr., (1985), "User's Manual For the Generalized Computer Program System: Open-Channel Flow and Sedimentation TABS-2,"HL-85-1, Hydraulics Laboratory, Waterways Experiment Station, Corps of Engineers, U. S. Army.
178. Toorman, E.A., (2001), "Cohesive sediment transport modeling: European perspective", in Coastal and Estuarine Fine Sediment Processes, edited by W. H. McAnally and A. J. Mehta, Elsevier, Amsterdam.
179. Tsai, C. H. and Tsai, C. T., (1995), "Modeling of Unsteady Flow in Curved Channels: Comparison of Numerical Methods,"Proceeding of International Conference on High-Performance Computing in Asia-Pacific Region, Taipei, Taiwan.
180. Tsai, C. T., Chang, K. Y. and Tsai, C. H., (1995), "A Numerical Model in Cartesian Coordinate System for Unsteady Flow in Curved Channels,"Proceeding of Second International Conference on Hydro-Science and Engineering, Beijing, China, pp. 370-377.
181. Tseng, M. H., (2000), "Two-dimensional Shallow Water Flows Simulation Using TVD-MacCormack Scheme,"Journal of Hydraulic Research, Vol. 38, No. 2, pp. 123-131.
182. U. S. Army Corps of Engineers, (1990), "Generalized Computer Program System for Open-Channel Flow and Sedimentation TABS System, Volume 1: General Overview,"Hydraulics Laboratory, Waterways Experiment Station.
183. van Leer, B., (1982), "Flux-Vector Splitting for the Euler Equations,"Proceeding of 8th International Conference on Numerical Methods in Fluid Dynamics, E. Krause ed., Springer Verlag, Berlin, Germany, pp. 507-512.
184. Van Leussen, W. Van Leussen, (1994), Estuarine macroflocs and their role in fine-grained sediment dynamics. In: PhD Thesis, Utrecht University pp. 1–488.
185. van Niekerk, A., Vogel, K. R., Slingerland, R. L. and Bridge, J. S., (1992a), "Routing of Heterogeneous Sediments over Movable Bed : Model Development,"Journal of Hydraulic Engineering, Vol. 118, No. 2, pp. 246-262.
186. Van Rijn, L. C., (1984), "SEDIMENT TRANSPORT .1. BED-LOAD TRANSPORT." Journal of Hydraulic Engineering-Asce 110(10): 1431-1456.
187. Vanoni, V. A., (1946), "Transportation of suspended sediment by water,"Transactions, American Society of Civil Engineers, Vol. 111, pp. 67-133.
188. Vanoni, V., (2006), Sedimentation engineering, Amer Society of Civil Engineers.
189. Vogel, K. R., van Niekerk, A., Slingerland, R. L. and Bridge, J. S., (1992b), "Routing of Heterogeneous Sediments over Movable Bed : Model Verification,"Journal of Hydraulic Engineering, Vol. 118, No. 2, pp. 263-279.
190. Wang, Tsan-Wen, (1973), "A Simulation of Sediment Deposition in Natural River by the Method of Characteristics,"台灣大學工程學刊,第16期.
191. Wiesner, M. R., (1992), "KINETICS OF AGGREGATE FORMATION IN RAPID MIX." Water Research 26(3): 379-387.
192. Williams, J. R., and Berndt, H. D., (1972), "Sediment Yield Computed with Universal Equation.", Journal of the Hydraulics Division, 98(12): 2087-2098
193. Winterwerp, J. C., (1998), "A simple model for turbulence induced flocculation of cohesive sediment." Journal of Hydraulic Research 36(3): 309-326.
194. Winterwerp, J. C., and W. G. M. van Kesteren, (2004), Introduction to the Physics of Cohesive Sediment in Marine Environment, Amsterdam, Elsevier, New York.
195. Wischmeier, W. H., Smith, D. D. and Uhland, R. E., (1958), "Evaluation of factors in the soil loss equation," Agricultural Engineering, Vol. 39, pp. 458-462.
196. Wolanski, E., J. Chappell, et al., (1989), "FLUIDIZATION OF MUD IN ESTUARIES." Journal of Geophysical Research-Oceans 94(C5): 6295-6296.
197. Wu, W., and Wang, S.Y., (2004), "Depth-averaged 2-D calculation of tidal flow salinity and cohesive sediment transport in estuaries," International Journal of Sediment Research, Vol. 19, No. 3, pp. 172-190.
198. Wu, Y., Falconer, R.A., and Uncles, R.J., (1998), "Modelling of water flows and cohesive sediment fluxes in the Humber estuary, UK," Marine Pollution Bulletin, Vol. 37, pp. 182-189.
199. Yalin, M. S. , (1972), Mechanics of Sediment Transport, Pergamon Press Inc., New York.
200. Yang, C. T., Molinas, A. and Song, C. S., (1988), "GSTARS - Generalized Stream Tube Model for Alluvial River Simulation,"U. S. Interagency Subcommittee on Sedimentation, December.
201. Yang, C.R., Tsai, C.H. and Tsai, C.T., (1998), "Application of GIS to the Estimation for Inundated-Damage Value", Journal of the Chinese Institute of Civil and Hydraulic Engineering, 10(1), 93-100.
202. Yee, H. C., (1987), "Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications,"Journal of Computational Physics, Vol. 68, pp. 151-179.
203. Yeh, K. C. and Kennedy, J. F., (1993a),"Moment Model of Nonuniform Channel-Bend Flow. I: Fixed Beds,"Journal of Hydraulic Engineering, Vol. 119, No. 7, pp. 776-795.
204. Yeh, K. C. and Kennedy, J. F., (1993b), "Moment Model of Nonuniform Channel-Bend Flow. II: Erodible Beds,"Journal of Hydraulic Engineering, Vol. 119, No. 7, pp. 796-815.
205. Yen, C. L. and Ho, S. Y., (1990), "Bed Evolution in Channel Bend,"Journal of Hydraulic Engineering, Vol. 116, No. 4, pp. 544-561.
206. Yen, C. L., (1967), "Bed Configuration of Characteristics of Subcritical Flow in A Meandering Channel," Ph.D. Dissertation, University of Iowa, Iowa city, U.S.A.
207. You, Z.-J. (2004), "The effect of suspended sediment concentration on the settling velocity of cohesive sediment in quiescent water." Ocean Engineering 31(16): 1955-1965.
208. Young, R.A , C.A. Onstad , D.D Bosch, and W.P Anderson, (1987), "Agricultural non-point-source pollution model. A watershed analysis tool.", U.S. Department of Agriculture, Conservation Research Report 35.
209. Zhao, D. H., Shen, H. W., Tabios III, G. Q., Lai, J. S. and Tan, W. Y., (1994), "Finite-Volume Two-Dimensional Unsteady-Flow Model for River Basins,"Journal of Hydraulic Engineering, Vol. 120, No. 7, pp. 863-883.
210. Zhao, D. H., Tabios III, G. Q. and Shen, H. W., (1992), "RBFVM-2D Model, River Basin Two-Dimensional Flow Model Using Finite Volume Method: Program Documentation,"University of California, Berkeley, Calif..
211. Zhu, Y.H, Lu, J. Y., Liao, H. Z., Wang, J. S., Fan, B. L., Yao, S.M., (2008), "Research on cohesive sediment erosion by flow: An overview", Science in China Series E: Technological Sciences, Vol. 51, Issue 11, p.p. 2001-2012
212. Ziegler, C.K., and Nesbit, B.S., (1994), "Fine-grained sediment transport in Pawtuxet River, Rhode Island," Journal of Hydraulic Engineering, ASCE, Vol. 120, No. 5, pp. 561–576.
213. Zijlema, M., Segal, A. and Wesseling, P., (1995), "Finite Volume Computation of Incompressible Turbulent Flows in General Coordinates on Staggered Grids,"International Journal For Numerical Method in Fluids, Vol. 20, pp. 621-640.