| 研究生: |
鄭豐慶 Cheng, Feng-Ching |
|---|---|
| 論文名稱: |
適用於慢性傷口之低能量光治療系統設計與實作 Design and Implementation of a Low-Level Light Therapy System Applied to Chronic Wounds |
| 指導教授: |
林志隆
Lin, Chih-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 低能量光治療系統 、發光二極體 、慢性傷口 、L929細胞 、區域調光演算法 |
| 外文關鍵詞: | Low-level light therapy system, light-emitting diode, chronic wound, L929 cell culture, local dimming algorithm |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人口結構老年化,慢性病的罹患機率增加,使得慢性傷口的問題也越來越複雜,由於慢性傷口癒合不易,若處理不妥將對患者造成傷害且加重醫療資源與人員的消耗與負擔。為促進傷口的細胞增生效率,光治療法已經被廣泛應用於臨床醫學上,因此本論文將提出一低能量光治療法之治療系統,針對傷口狀態以相呼應波長之光能量進行照射治療,同時所提出之基於恆流源LED陣列之區域調光演算法,不僅能提升傷口照射面之光均勻度,更可對特定區域進行指定輻照度的光治療,提升慢性傷口癒合能力。
本系統採用415 nm藍光來進行殺菌,並以633 nm紅光和850 nm紅外光來促進增生期的成纖維母細胞活化,藉由不同輻照度及照射時間來進行光生物調解之體外細胞實驗。而為避免LED陣列之光疊加效應所導致的光均勻度不均問題,本系統針對LED之不同工作週期進行輻照度量測,並透過所建立之光源衰減範圍矩陣,建構出基於最小平方 (least square)之區域調光演算法。由實驗結果得知,本系統對L929細胞之光照實驗之最佳參數為633 nm紅光操作在輻照度15 mW/cm2下給予3 J/cm2能量密度,可讓L929有最佳細胞增生率。而在殺菌實驗中則是以藍光操作在25 mW/cm2、50 J/cm2時可對綠膿桿菌產生顯著的滅菌效果。此外,本論文亦透過調光演算法以MATLAB模擬得到之理想輻照度值與實際量測值可計算出在理想輻照度5 mW/cm2、15 mW/cm2、25 mW/cm2下平均誤差分別為1.93%、1.73%、1.4%,顯示本系統在輻照度的穩定性與強健性,且由光學量測結果顯示陣列均勻度最高可達97.9%,亦說明本系統具有高均勻度的特性進而降低細胞實驗的變異性。最後本論文也展示初步傷口區域影像辨識結果,藉由導入RCNN模型來選取傷口區域面積,以增強治療系統對傷口修復之泛用性。
This work presents a Low-Level Light Therapy (LLLT) system which can irradiate in a specific wavelength of light and energy to the corresponding state of a wound in order to promote tissue healing. Moreover, this work proposes a LED-based local dimming algorithm which can optimize the uniformity of the irradiated position, helping improve wound healing. This system utilizes a blue light of 415 nm to sterilize Pseudomonas aeruginosa and adopts a red light of 633 nm and infrared of 850 nm to enhance the activity of fibroblast. An in vitro experiment of photobiomodulation on L929 cell cultures was conducted over several irradiance and time periods to evaluate the feasibility of the proposed system in healing wounds. Furthermore, to avoid the experimental variation caused by the light superposition principle, the local dimming algorithm is proposed based on the least square method to adjust the irradiance of each LED. The experimental results demonstrate that the red light (633nm) with an irradiance of 15 mW/cm2 and the energy density of 3 J/cm2 are the optimal parameters for stimulating cell proliferation. Additionally, the results of sterilization show that blue light (415 nm) with an irradiance of 25 mW/cm2 and energy density of 50 J/cm2 can produce a significant effect on Pseudomonas aeruginosa. Moreover, the average error rates of irradiance are 1.93%, 1.73%, and 1.4%, which are associated with the irradiance of 5 mW/cm2, 15 mW/cm2, and 25 mW/cm2, showing the stability and robustness of the proposed system. Consequently, the uniformity of irradiance can achieve 97.9%, indicating that this work is capable of reducing variation in the experimental process. To enhance the universality of the treatment system for wound healing, this work additionally reveals a preliminary result of distinguishing the distinct wound area of a captured image using the RCNN-based model.
[1] “國家發展委員會-互動式統計圖-老年人口成長趨勢”https://pop-proj.ndc.gov.tw/chartList.aspx?uid=60&pid=60
[2] “行政院主計總處-109年國情統計通報”https://www.dgbas.gov.tw/public/Data/0421160424J9NIEKQ.pdf
[3] “衛生福利部國民健康署-中老年身心社會生活狀況長期追蹤調查成果報告” https://www.hpa.gov.tw/Pages/List.aspx?nodeid=108
[4] A. H. Jhang, and C. J. Wen, “An older adult with multiple comorbidities and chronic wounds- a brief introduction of long-term care system,” Journal of Internal Medicine of Taiwan, vol. 30, no. 1, pp. 14-18, Feb. 2019.
[5] M. Mcguckin, R. Goldman, L. Bolton, and R. Salcido, “The clinical relevance of microbiology in acute and chronic wounds,” Advances in Skin & Wound Care, vol. 16, no. 1, pp. 24-25, Jan./Feb. 2003.
[6] “傷口大師:先進敷料的功能分類”https://yk0405.pixnet.net/blog/post/315541813
[7] H. T. Whelan, J. M. Houle, N. T. Whelan, D. L. Donohoe, J. Cwiklinski, M. H. Schmidt, L. J Gould, D. L. Larson, G. A. Meyer, V. Cevenini, and H. Stinson, “The NASA light-emitting diode medical program—progress in space flight and terrestrial applications,” AIP Conference Proceedings, vol. 504, no. 1, pp. 37-43, Feb. 2001.
[8] B. M. Kajagar, A. S. Godhi, A. Pandit, and S. Khatri, “Efficacy of low level laser therapy on wound healing in patients with chronic diabetic foot ulcers—a randomised control trial,” Indian Journal of Surgery, vol. 74, no. 5, pp. 359-363, Apr. 2012.
[9] E. Mester, B. Szende, and P. Gartner, “The effect of laser beams on the growth of hair in mice,” Radiobiol Radiother, vol. 9, no. 5, pp. 621-626, 1968.
[10] I. B. Kov⇂S, E. Mester, and P. Görög, “Stimulation of wound healing with laser beam in the rat,” Experientia, vol. 30, no. 11, pp. 1275-1276, Nov. 1974.
[11] M. R. Hamblin and T. N. Demidova, “Mechanisms of low level light therapy,” Mechanisms for Low-Light Therapy, vol. 6140, pp. 614001-614012, Feb. 2006.
[12] L. F. de Freitas and M. R. Hamblin, “Proposed mechanisms of photobiomodulation or low-level light therapy,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 3, pp. 348-364, May/Jun. 2016.
[13] P. Kumar, D. Chawla, and A. Deorari, “Light-emitting diode phototherapy for unconjugated hyperbilirubinaemia in neonates,” Cochrane Database of Systematic Reviews, no. 12, pp. CD007969, Dec. 2011.
[14] “奇美醫院-皮膚科-紫外線光治療”http://www.chimei.org.tw/eboard/view.aspx?uid=2009030078
[15] “Photobiomodulation - Applied BioPhotonics Ltd.”http://www.appliedbiophotonics.com/photobiomodulation/
[16] A. P. Sommer, A. L. B. Pinheiro, A. R. Mester, R.-P. Franke, and H. T. Whelan, “Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system,” Journal of Clinical Laser Medicine & Surgery, vol. 19, no. 1, pp. 29-33, Feb. 2001.
[17] 郭緒東, 張天長, “外傷傷口癒合與慢性傷口” 家庭醫學與基層醫療, vol. 27, no. 12, pp. 422-426, Dec. 2012.
[18] S. A. Eming, P. Martin, and M. Tomic-Canic, “Wound repair and regeneration: mechanisms, signaling, and translation,” Science Translational Medicine, vol. 6, no. 265, pp. 265sr6-265sr6, Dec. 2014.
[19] C. Opländer, S. Hidding, F. B. Werners, M. Born, N. Pallua, and C. V. Suschek, “Effects of blue light irradiation on human dermal fibroblasts,” Journal of Photochemistry and Photobiology B: Biology, vol. 103, no. 2, pp. 118-125, May 2011.
[20] J. S. Guffey and J. Wilborn, “In vitro bactericidal effects of 405-nm and 470-nm blue light,” Photomedicine and Laser Surgery, vol. 24, no. 6, pp. 684-688, Dec. 2006.
[21] T. Dai, A. Gupta, C. K. Murray, M. S. Vrahas, G. P. Tegos, and M. R. Hamblin, “Blue light for infectious diseases: propionibacterium acnes, helicobacter pylori, and beyond?,” Drug Resistance Updates, vol. 15, no. 4, pp. 223-236, Aug. 2012.
[22] E. M. Vinck, B. J. Cagnie, M. J. Cornelissen, H. A. Declercq, and D. C. Cambier, “Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation,” Lasers in Medical Science, vol. 18, no. 2, pp. 95-99, May 2003.
[23] C. A. Damante, G. D. Micheli, S. P. H. Miyagi, I. S. Feist, and M. M. Marques, “Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts,” Lasers in Medical Science, vol. 24, no. 6, pp. 885-891, Nov. 2009.
[24] L. E. R. Volpato, R. C. D. Oliveira, M. M. Espinosa, V. S. Bagnato, and M. A. A. M. Machado, “Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode,” Journal of Biomedical Optics, vol. 16, no. 7, pp. 075004-075009, Jul. 2011.
[25] Y.-Y. Huang, A. C.-H. Chen, J. D. Carroll, and M. R. Hamblin, “Biphasic dose response in low level light therapy,” Dose-Response, vol. 7, no. 4, pp. 358-383, Sep. 2009.
[26] M. A. Hadis, S. A. Zainal, M. J. Holder, J. D. Carroll, P. R. Cooper, M. R. Milward, and W. M. Palin, “The dark art of light measurement: accurate radiometry for low-level light therapy,” Lasers in Medical Science, vol. 31, no. 4, pp. 789-809, May 2016.
[27] M. A. Hadis, P. R. Cooper, M. R. Milward, P. C. Gorecki, E. Tarte, J. Churm, and W. M. Palin, “Development and application of LED arrays for use in phototherapy research,” Journal of Biophotonics, vol. 10, no. 11, pp. 1514-1525, Nov. 2017.
[28] S. Katz, P. Backeris, C. Merck, M. Suprun, S. D’Souza, D. F. Bishop, R. J. Desnick, K. Moore, I. Ubarretxena-Belandia, and I. R. Lemischka, “Design and validation of an open-source modular microplate photoirradiation system for high-throughput photobiology experiments,” Plos One, vol. 13, no. 10, pp. e0203597, Oct. 2018.
[29] M. Pirc, S. Caserman, P. Ferk, and M. Topič, “Compact UV LED lamp with low heat emissions for biological research applications,” Electronics, vol. 8, no. 3, pp. 343, Aug. 2019.
[30] M. H. Kathawala, W. L. Ng, D. Liu, M. W. Naing, W. Y. Yeong, K. L. Spiller, M. V. Dyke, and K. W. Ng, “Healing of chronic wounds: an update of recent developments and future possibilities,” Tissue Engineering Part B: Reviews, vol. 25, no. 5, pp. 429-444, Oct. 2019.
[31] D. Gray, R. White, P. Cooper, and A. Kingsley, “Applied wound management and using the wound healing continuum in practice,” Wound Essentials, vol. 5, pp. 131-139, 2010.
[32] M. E. D. A. Chaves, A. R. D. Araújo, A. C. C. Piancastelli, and M. Pinotti, “Effects of low-power light therapy on wound healing: LASER × LED,” Anais Brasileiros de Dermatologia, vol. 89, no. 4, pp. 616-623, Jul./Aug. 2014.
[33] D. Gray, R. J. White, and P. Cooper, “The wound healing continuum,” British Journal of Community Nursing, vol. 7, no. Sup4, pp. 15-19, Jul. 2002.
[34] S. Yang, J. Park, H. Lee, S. Kim, B. U. Lee, K. Y. Chung, and B. Oh, “Sequential change of wound calculated by image analysis using a color patch method during a secondary intention healing,” Plos One, vol. 11, no. 9, pp. e0163092, Sep. 2016.
[35] R. G. Calderhead, “The photobiological basics behind light-emitting diode (LED) phototherapy,” LASER THERAPY, vol. 16, pp. 97-108, Jan. 2007.
校內:2025-07-22公開