簡易檢索 / 詳目顯示

研究生: 劉衍昌
Liu, Yen-Cheng
論文名稱: 以氧化閘極金屬來縮短 GaN/AlGaN/GaN HEMTs 閘極長度
Shrinking Gate Length by Oxidization Treatment in GaN/AlGaN/GaN HEMTs
指導教授: 李景松
Lee, Ching-Sung
許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 59
中文關鍵詞: 鎳/金氧化處裡高速元件
外文關鍵詞: HEMT, Ni/Au, Oxidization treatment
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗提出一個利用氧化閘極金屬來縮短有效的閘極長度方法。氧化方式提供了快速、方便、成本低且有效提升元件特性。使用氧化閘極金屬製程是利用了各個金屬有各別不同的氧化係數,且氮化鎵(GaN)具有優異的化學穩定性和物理穩定性,不易受雙氧水氧化所影響。當元件閘極金屬製作完成後,利用一般雙氧水使元件閘極金屬氧化,因閘極金屬鎳/金的氧化能力不同,導致閘極下方金屬有效縮短長度。實驗結果顯示,經氧化處理後改善元件的直流和微波特性:飽和電流密度IDSS0 (305 mA/mm -> 322 mA/mm) 、最大轉導值gm,max (99 mS/mm -> 114 mS/mm)、夾止電壓Vpinch-off (–3.2 V -> –3 V)、電流增益截止頻率fT (11.1 GHz -> 14.4 GHz)、最大震盪頻率fmax (14.6 GHz -> 17.4 GHz)、最小雜訊NFmin (1.902 dB -> 1.384 dB),最大輸出功率Pout (24.5 % -> 31.1 %) 。

    In this work, we preset an effective method of shrinking gate length by oxidization gate metal. The oxidization method’s advantages are fast, low cost, simple and effective increase devices performance. The gate metal process to be use metal different coefficient of oxidization by oxidization treatment, and the GaN has excellent chemical and physics stability, so it is difficult to be oxidized by the H2O2. We can oxidize the gate metal by using general H2O2 after we finish the gate metal’s process. Because the different coefficient of oxidization of Ni/Au gate meal, it is effective to shrink gate length of metal below the gate.Experiment results indicate that the oxidization process can improve devices DC and microwave characteristics: the saturation drain current density IDSS0 (305mA/mm -> 322 mA/mm), the maximum extrinsic transconductance gm,max (99 mS/mm -> 114mS/mm), the pinch-off voltage Vpinch-off (–3.2 V -> –3 V), the unity current gain cut-off frequency fT (11.1 GHz -> 14.4 GHz), the maximum oscillation frequency fmax (14.6 GHz -> 17.4 GHz), the minimum noise figure NFmin (1.902 dB -> 1.384 dB) and the power-added-efficiency (P.A.E.) (24.5 % -> 31.1 %).

    Abstract (Chinese) Ⅲ Abstract (English) Ⅴ Figure Captions Ⅹ Chapter 1 Introduction 1 Chapter 2 Material Growth and Fabrication 5 2-1 Device Structure 5 2-2 Fabrication Processes 5 2-2-1 Sample Orienting 6 2-2-2 Mesa Isolation 6 2-2-3 Source and Drain Ohmic Contact 7 2-2-4 Gate Schottky Contact 8 2-2-5 H2O2 Treatment 9 Chapter 3 Results and Discussions 10 3-1 DC Characteristics 10 3-1-1 Current- Voltage Characteristic 10 3-1-2 Transfer Characterisitics 11 3-1-3 Breakdown Voltage 13 3-1-4 Output Conductance 14 3-1-5 H2O2 Oxidization Treatment Time 14 3-2 Temperature-Dependent DC Characteristics 15 3-2-1 Current-Voltage Characteristics 15 3-2-2 Transfer Characteristics 15 3-2-3 Breakdown Voltage 17 3-3 Microwave Characteristics 17 3-4 Power Characteristics 19 3-5 Noise Characteristics 21 Chapter 4 Conclusion 23 Reference 24 Figures 28

    [1] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, “High Breakdown Voltage Undoped AlGaN–GaN Power HEMT on Sapphire Substrate and Its Demonstration for DC–DC Converter Application”, IEEE Trans. Electron Device, Vol. 51, pp. 1913-1917, Nov. 2004.
    [2] B. S. Kang, S. Kim, F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal. J. C. Roberts, E. L. Piner, K. J. Linthicum, S. N. G. Chu, K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Pressure-induced changes in the conductivity of AlGaN/GaN high-electron mobility-transistor membranes”, Applied Physics Letters, Vol. 85, pp. 2962-2964, 2004.
    [3] U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTs—An Overview of device operation and applications”, Proceedings Of The IEEE, Vol. 90, No. 6, June 2002
    [4] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides”, Physical Review B, Vol. 56, pp. R10 024-R10 027, Oct. 1997.
    [5] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs”, IEEE Trans. Electron Device, Vol. 48, pp. 450-457, Mar. 2001.
    [6] P. M. Asdeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Van Hove and J. Redwing, “piezoelectric charge densities in AlGaN/GaN HFETs”, Electron. Lett.,33 1230(1997).
    [7] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S, S, Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field effect transistors”, Apply. Phys. Lett. 71, 2794(1997)
    [8] T. B. Wang, “Improved Nitride-based Optical and Electrical Devices,” Ph.D. thesis, National Cheng-Kung University, 2007.
    [9] D. F Storm, D. S. Katzer, S. C. Binari, B. V. Shanabrook, X. Xu, D. S. McVey, R. P. Vaudo and G. R. Brandes, “Room temperature Hall mobilities above 1900cm2/Vs in MBE-grown AlGaN/GaN HEMT structures”, IEE Electronics Letters, Vol. 40, pp. 1226-1227, Jun. 2004.
    [10] N. Hara, K. Makiyama, T. Takahashi, K. Sawada, T. Arai, T. Ohki, et al., “Highly Uniform InAlAs–InGaAs HEMT Technology for High-Speed Optical Communication System ICs,” IEEE Trans. Semiconductor Manufacturing, Vol. 16, No. 3, pp. 370-375, Aug. 2003.
    [11] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, and K. J. Linthicum, “12 W/mm AlGaN–GaN HFETs on Silicon Substrates”, IEEE Electron Device Letters, Vol. 25, pp. 459-461, Jul. 2004.
    [12] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth, pp. 189-190, 1998.
    [13] P. Javorka, “Fabrication and Characterization of AlGaN/GaN High Electron Mobility Transistors,” Ph.D. thesis, University of Aachen RWTH, 2004.
    [14] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-High Power Density AlGaN/GaN HEMTs,” IEEE Trans. Electron Device, Vol. 48, pp. 586-590, Mar. 2001.
    [15] D. Geiger, J. Dickmann, C. Wolk, and E. Kohn, “Recess dependent breakdown behavior of GaAs-HFETs,” IEEE Electron Device Lett., Vol. 16, pp. 30-32, 1995.
    [16] Hong Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall, 2001.
    [17] J. Chen, D. G. Ivey, J. Bardwell, Y. Liu, H. Tang, and J. B. Webb, “Microstructural analysis of Ti/Al/Ti/Au ohmic contact to n-AlGaN/GaN,” J. Vac. Sci. Technol., Vol. 20, No. 3, pp. 1004-1010, 2002.
    [18] D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. S. Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., Vol. 89, No. 11, pp. 6214-6217, June 2001.
    [19] N. Chaturvedi, U. Zeimer, J. Wurfl and G. Trankle, “Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors” Semiconductor Science and technology, Vol. 21, pp. 175-179, Jan. 2006.
    [20] J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, et al., “Investigation of self-heating effects in AlGaN-GaN HEMTs,” Proc. EDMO, pp. 21-26, 2001.
    [21] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett., Vol. 19, No. 3, pp. 89-91, 1998.
    [22] P. Cova, R. Menozzi, D. Lacey, Y. Baeyens and F. Fantini, “High performance electron devices for microwave and optoelectronic applications,” EDMO, IEEE 1995 Workshop, 1995.
    [23] K. Kiziloglu, H. Ming, D. S. Harvey, R. D. Widman, C. E. Hooper, P. B. Janke, J. J. Brown, L. D. Nguyen, D. P. Docter and S. R. Burkhart, “High-performance AlGaAs/InGaAs/GaAs PHEMTs for K and Ka-band applications,” Microwave Symposium Digest, IEEE MTT-S International, vol. 2, p. 13, 1999.
    [24] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, and Y. C. Yang, “High-Power Density and High-Gain δ-Doped In0.425Al0.575As/In0.425Ga0.575As Low-Voltage for Operation,” J. of the Electronchemical Soc., Vol. 154, pp. 185-190, 2007.
    [25] M. Miyashita, N. Yoshida, Y. Kojima, T. Kitano, N. Higashisaka, J. Nakagawa, T. Takagi and M. Otsubo, “An AlGaAs/InGaAs pseudomorphic HEMT modulator driver IC with low power dissipation for 10-Gb/s optical transmission systems”, Microwave Theory and Techniques, Vol. 45, pp. 1058 ,1997.
    [26] A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesjda, “Dependence of DC and RF characteristics on gate length for high current AlGaN/GaN HFETs,” Electronics Lett., Vol. 33, No. 12, pp. 1081-1083, 1997.
    [27] L. Shen, R. Coffie, D. Buttari, S. Heikman, A. Chakraborty, A. Chini, S. Keller, S. P. DenBaars, and U. K. Mishra, “High-Power Polarization-Engineered GaN/AlGaN/GaN HEMTs Without Surface Passivation, ”IEEE Electron Devices Lerrers, Vol. 25, No. 1, JANUARY 2004
    [28] W. Lu, V. Kumar, E. L. Piner, and I. Adesida, “DC, RF, and Microwave Noise Performance of AlGaN-GaN Field Effect Transistors Dependence of Aluminum Concentration,” IEEE Trans. Electron Devices, Vol. 50, No. 4, pp. 1069-1074, Apr. 2003.

    下載圖示 校內:2019-07-02公開
    校外:2019-07-02公開
    QR CODE