簡易檢索 / 詳目顯示

研究生: 呂維庭
Lu, Wei-Ting
論文名稱: 結合深度學習與迭代反向投影法實現圖像超解析度
Combining Deep Learning with Iterative Back Projection for Image Super Resolution
指導教授: 郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 59
中文關鍵詞: 超解析度技術深度學習卷積神經網路迭代反向投影
外文關鍵詞: super-resolution, deep learning, convolutional neural networks, iterative back projection
相關次數: 點閱:150下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本篇論文中,我們提出兩種結合卷積神經網路 (Convolutional neural networks, CNN) 以及迭代反向投影 (Iterative back projection, IBP) 的方法來強化圖像超解析度。第一個方法針對多重放大倍率的圖像超解析度,一般基於卷積神經網路的超解析度技術中,對於每一個圖像放大倍率都要個別訓練一個卷積神經網路的模組,例如要實現兩倍放大的圖像超解析度,在訓練模組時就必須針對兩倍的放大圖像做訓練。在此篇論文中,我們只利用一個卷積神經網路模組實現不同放大倍率的圖像超解析度,換句話說,在訓練時以一個模組同時訓練不同的放大倍率,再進一步利用迭代反投影技術強化輸出的高解析度圖像;第二個方法利用卷積神經網路技術,改良迭代反向投影演算法中誤差補償的部分。我們進一步將此基於卷積神經網路改良的迭代反向投影方法 (CNN-based iterative back projection, CIBP) 與現存的超解析度卷積神經網路 (Super-resolution convolutional neural networks, SRCNN) 做結合,得到更好的超解析度重建圖像。根據實驗結果,我們所提出的兩種方法都能夠得到優於其他方法的超解析度效果。

    In this thesis, we investigate two approaches to enhance image super-resolution by combining the deep Convolutional Neural Networks (CNN) with Iterative Back Projection (IBP). For the first approach, a CNN model is learned from mapping from the low resolution images into the high resolution ones. Unlike conventional methods, we train several scaling factors in the same network. Then, the IBP is utilized to further reduce the artefacts in the generated high resolution image. This approach enables us process different scaling factors using only a single CNN model. For the second approach, we use an additional error-compensated CNN model (eCNN) to more accurately compensate the residual in the IBP, which is further combined with the super-resolution CNN (SRCNN). The experiment results show that our methods significantly enhance the restoration quality, and outperform the state-of-the-art super-resolution methods.

    中文摘要 I 誌謝 VIII 目錄 IX 圖目錄 XI 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 研究貢獻 2 1-4 論文架構 3 第二章 相關研究背景介紹 4 2-1 超解析度 (Super-Resolution) 4 2-2 深度學習 (Deep Learning) 7 2-2-1 人工神經網路 (Artificial Neural Networks) 7 2-2-2 深度神經網路 (Deep Neural Networks) 8 2-2-3 卷積神經網路(Convolutional Neural Networks) 11 2-2-4 梯度消失與梯度爆炸 14 2-3 文獻回顧 15 2-3-1 基於卷積神經網路超解析度技術 15 2-3-2 基於迭代反向投影之超解析度技術 16 第三章 多倍率圖像超解析度 19 3-1 多倍率超解析度卷積神經網路架構 19 3-2 系統架構簡介 21 3-3 網路訓練 22 3-4 迭代反向投影後處理 24 第四章 基於卷積神經網路之迭代反向投影法 26 4-1 誤差補償卷積神經網路(Error-Compensated CNN, eCNN) 27 4-2 利用超解析度神經網路結合CIBP 29 第五章 實驗及測試結果 31 5-1 資料庫 (Dataset) 31 5-2 卷積神經網路訓練參數 31 5-2-1 多倍率超解析度卷積神經網路 (mSRCNN) 31 5-2-2 改良迭代反向投影法中的誤差補償卷積神經網路 (eCNN) 34 5-3 重建結果 35 5-3-1 多倍率超解析度卷積神經網路實驗結果 35 5-3-2 基於卷積神經網路之迭代反向投影法實驗結果 44 5-3-3 執行時間 50 5-3-4 不同隱層神經元數量測試 50 5-3-5 實驗結果討論 51 第六章 結論與未來展望 53 6-1 結論 53 6-2 未來展望 54 參考文獻 55

    [1] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Transactions on Image processing, vol. 13, no. 10, pp. 1327–1344, 2004.
    [2] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single image,” IEEE 12th International Conference on Computer Vision, pp. 349–356, 2009.
    [3] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” Computer Vision-ECCV, pp. 184-199, 2014
    [4] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graphical models and image processing, vol. 53, no. 3, pp. 231–239, 1991.
    [5] M. Irani and S. Peleg, “Motion analysis for image enhancement: Resolution, occlusion, and transparency,” Journal of Visual Communication and Image Representation, vol. 4, no. 4, pp. 324–335, 1993.
    [6] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 2861–2873, 2010.
    [7] C. E. Duchon, “Lanczos filtering in one and two dimensions,” Journal of Applied Meteorology, vol. 18, no. 8, pp. 1016–1022, 1979.
    [8] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Transactions on Image Processing, vol. 10, no. 10, pp. 1521–1527, 2001.
    [9] G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,” ACM Transactions on Graphics (TOG), vol. 30, no. 2, pp. 12, 2011.
    [10] J. Yang, Z. Lin, and S. Cohen, “Fast image super-resolution based on in-place example regression,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1059–1066, 2013.
    [11] H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embedding,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I–I, 2004.
    [12] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-complexity single-image super-resolution based on nonnegative neighbor embedding,” British Machine Vision Conference, BMVC, pp. 135.1–135.10, 2012.
    [13] R. Timofte, V. De, and L. Van Gool, “Anchored neighborhood regression for fast example-based super-resolution,” IEEE International Conference, ICCV, pp. 1920–1927, 2013.
    [14] K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biological Cybernetics, vol. 36, no. 4, pp. 193-202, 1980.
    [15] Rosenblatt, Frank, The perceptron, a perceiving and recognizing automaton, Cornell Aeronautical Laboratory, 1957.
    [16] M. Minsky and S. Papert, “Perceptrons,” Cambridge: MIT Press, 1969.
    [17] Williams, DE Rumelhart GE Hinton RJ, and G. E. Hinton. "Learning representations by back-propagating errors," Nature 323, 533-536, 1986.
    [18] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks," Machine learning 20.3, 273-297, 1995.
    [19] Freund, Yoav, and Robert E. Schapire. "Experiments with a new boosting algorithm," ICML, vol. 96, pp. 148-156, 1996.
    [20] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks," Science 313.5786 , pp. 504-507, 2006.
    [21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
    [22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, pp. 1097–1105, 2012.
    [23] D. Eigen, D. Krishnan, and R. Fergus, “Restoring an image taken through a window covered with dirt or rain,” IEEE International Conference, ICCV, pp. 633–640, 2013.
    [24] P. Smolensky, "Information processing in dynamical systems: Foundations of harmony theory," Parallel distributed processing: explorations in the microstructure of cognition, vol. 1, pp. 194-281, 1986.
    [25] G. E. Hinton, S. Osindero and Y. W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, pp. 1527-1554, 2006.
    [26] J. Gao, Y. Guo, and M. Yin, “Restricted Boltzmann machine approach to couple dictionary training for image super-resolution,” IEEE International Conference, ICIP, pp. 499–503, 2013.
    [27] Y. Zhou, Y. Qu, Y. Xie, and W. Zhang, “Image Super-Resolution Using Deep Belief Networks,” International Conference on Internet Multimedia Computing and Service, pp. 28, 2014.
    [28] Hubel, David H., and Torsten N. Wiesel. "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex," The Journal of physiology 160.1, pp 106-154, 1962.
    [29] Barnard, Etienne, and David Casasent. "Shift invariance and the neocognitron,"Neural Networks 3.4, pp 403-410, 1990.
    [30] M. N. Bareja and C. K. Modi, “An effective iterative back projection based single image super resolution approach,” International Conference, CSNT, pp. 95–99, 2012.
    [31] R. R. Makwana and N. D. Mehta, “Single Image Super-Resolution VIA Iterative Back Projection Based Canny Edge Detection and a Gabor Filter Prior,” International Journal of Soft Computing and Engineering (IJSCE), vol. 3, no. 1, pp. 2231–2307, 2013.
    [32] Q. Zhou, S. Chen, J. Liu, and X. Tang, “Edge-preserving single image super-resolution,” ACM international conference on Multimedia, pp. 1037–1040, 2011.
    [33] V. Jain and S. Seung, “Natural image denoising with convolutional networks,” Neural Information Processing Systems, pp. 769–776, 2009.
    [34] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” COMPSTAT, pp. 177–186, 2010.
    [35] J. Bouvrie, “Notes on convolutional neural networks,” Technical report, 2006.
    [36] Wilson, D. Randall, and Tony R. Martinez. "The general inefficiency of batch training for gradient descent learning," Neural Networks 16.10, pp. 1429-1451, 2003.
    [37] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,” Curves and Surfaces, pp. 711–730, 2012.
    [38] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011.
    [39] Jia, Yangqing, et al. "Caffe: Convolutional architecture for fast feature embedding." ACM International Conference on Multimedia , pp. 675-678, 2014.
    [40] Y. Liang, J. Wang, S. Zhou, Y. Gong, and N. Zheng, “Incorporating image priors with deep convolutional neural networks for image super-resolution,” Neurocomputing, pp.340-347, 2016.
    [41] Wang, Zhou, et al. "Image quality assessment: from error visibility to structural similarity," IEEE transactions on image processing 13.4, pp. 600-612, 2004.
    [42] Sheikh, Hamid R., Alan C. Bovik, and Gustavo De Veciana. "An information fidelity criterion for image quality assessment using natural scene statistics," IEEE Transactions on image processing 14.12, pp. 2117-2128, 2005.
    [43] Zhang, Lin, et al. "FSIM: a feature similarity index for image quality Assessment," IEEE transactions on Image Processing 20.8 , pp. 2378-2386, 2011.
    [44] Zhang, Lin, et al. "A comprehensive evaluation of full reference image quality assessment algorithms."IEEE International Conference on Image Processing, pp.1477-1480, 2012.

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE