| 研究生: |
許哲禎 Hsu, Che-Chen |
|---|---|
| 論文名稱: |
使用差動式可切換IMOS變容器之LC壓控振盪器的2.4 GHz非整數型鎖相迴路設計 2.4 GHz Fractional-N PLL Design With Differential Switchable IMOS-Based Varactor VCO |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | IMOS可變電容器 、VCO 、非整數型鎖相迴路 |
| 外文關鍵詞: | IMOS varactor, Voltage-controlled Oscillator, Fractional-N PLL |
| 相關次數: | 點閱:120 下載:44 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為應用於2.4 GHz ISM band的非整數型鎖相迴路電路設計,內容可分為兩個部分:第一部分為鎖相迴路的其中一個子電路,壓控振盪器的設計;第二部分為完整的非整數型鎖相迴路。在本論文所設計之兩個電路皆使用 TSMC 0.18 µm CMOS製程設計實現。
在第一部分壓控振盪器採用差動式可切換IMOS變容器並加入開關方式提高容值變化範圍,進而使壓控振盪器的頻率可調範圍增加。容值在模擬結果變化範圍為 0.3 pf ~ 0.95 pf。在本次設計電路之量測頻率變化範圍為2.625 GHz~1.94 GHz (30%);相位雜訊在頻率偏移1MHz處的最佳表現為 -121 dBc/Hz;整體輸出功率皆大於 -12 dBm;功率消耗為6.6mW。包含緩衝放大器之整體晶片面積為0.75 mm2。
在第二部分2.4 GHz非整數型鎖相迴路中,子電路包含相位頻率偵測器(PFD)、充電泵(CP)、迴路低通濾波器(LPF)、壓控振盪器(VCO)、多模數除頻器(MMD)及三角積分調變器(SDM)。藉由三角積分調變器控制多模數除頻器除數,在一段時間內除數的變化達到平均為除非整數的功能,並有頻帶不受參考頻率的限制、較小的鎖定時間、較佳的相位雜訊表現等優點。在本次設計電路之量測參考頻率為18.75 MHz,操作頻率為2.4 GHz ~ 2.521 GHz;相位雜訊在頻率偏移 1 MHz處的最佳表現為 -96.8 dBc/Hz,整體皆小 於-85 dBc/Hz;輸出功率皆大於2 dBm;整體功率消耗為9.36 mW。包含緩衝放大器之整體晶片面積為1.81 mm2。
This thesis proposes a fractional-N phase-locked loop circuit applied to the 2.4 GHz ISM band. The content can be divided into two parts: the first part is the design of one of PLL's sub-circuits, the voltage-controlled oscillator, and the second part is a complete 2.4 GHz fractional phase-locked loop. These two circuits are both fabricated by TSMC’s 0.18 µm COMS technology.
In the first part, the VCO design, an Inversion-MOS (IMOS)-based varactor is used, which is connected differentially and uses switches to increase the range of capacitance. Such design methodology can increase the tuning range of the VCO. The capacitance is from 0.3 pf to 0.95 pf in the simulation results. The measurement of tuning range of VCO is 2.625 GHz~1.94 GHz (30%).The best performance of phase noise is -121 dBc/Hz at 1 MHz frequency offset. Output power is greater than -12 dBm. Power consumption is 6.6 mW. The total chip size including buffer amplifier and pads is 0.75 mm2.
In the second part, the 2.4 GHz fractional-N PLL design, its sub-circuits include a phase frequency detector, a charge pump, a loop low pass filter, a voltage-controlled oscillator, a multi-modulus divider and a delta-sigma modulator. By dithering the division ratio, a fractional divider is implemented, which has the advantages of not-reference-frequency-limited, less locking time, and better phase noise performance. The reference frequency is set to 18.75 MHz, and the operating frequency range is from 2.4 GHz to 2.521 GHz.The best performance of phase noise is -96.8 dBc/Hz at 1 MHz frequency offset, and the overall phase noise performance is less than -85 dBc /Hz. Output power is greater than 2 dBm. Overall power consumption is 9.36 mW. The total chip size including buffer amplifier and pads is 1.81 mm2.
[1] Cees Links, The Evolution of Wi-Fi networks: from IEEE 802.11 to Wi-Fi 6E, Available: https://www.wevolver.com/article/the-evolution-of-wi-fi-networks-from-ieee-80211-to-wi-fi-6e
[2] Jack Browne, What’s the Difference Between Wi-Fi 5 and Wi-Fi 6 ?, Available: https: //www.mwrf.com/technologies/systems/article/21849959/whats-the-difference-etween-wifi -5-and-wifi-6
[3] M. Fang and T. Yoshimasu, “A −197.3-dBc/Hz FoMT Wideband LC-VCO IC With a Single Voltage-Controlled IMOS-Based Novel Varactor in 40-nm CMOS SOI,” IEEE Trans. Microwave Theory Techn., vol. 68, no. 10, pp. 4116–4121, Oct. 2020.
[4] D. Ham and A. Hajimiri, "Concepts and methods in optimization of integrated LC VCOs," IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, June 2001.
[5] F. Gardner, “Charge-Pump Phase-Lock Loops,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1849–1858, Nov. 1980.
[6] Tsung-Hsien Lin, Ching-Lung Ti, and Yao-Hong Liu, “Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs,” IEEE Trans. Circuits Syst. I, vol. 56, no. 5, pp. 877–885, May 2009.
[7] T. A. D. Riley, M. A. Copeland and T. A. Kwasniewski, "Delta-sigma modulation in fractional-N frequency synthesis," IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May 1993.
[8] List of WLAN channels, Available: https://en.wikipedia.org/wiki/List_of_WLAN_cha nnels
[9] K. K. Hung, P. K. Ko, C. Hu and Y. C. Cheng, "A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors," IEEE Trans. Electron Devices, vol. 37, no. 3, pp. 654-665, March 1990.
[10] R. Sarpeshkar, T. Delbruck and C. A. Mead, "White noise in MOS transistors and resistors," IEEE Circuits and Devices Magazine, vol. 9, no. 6, pp. 23-29, Nov. 1993.
[11] B. Razavi, RF Microelectronics. second edition, Prentice Hall, Inc., 2012.
[12] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[13] Y. Shin, T. Kim, S. Kim, S. Jang, and B. Kim, “A Low Phase Noise Fully Integrated CMOS LC VCO Using a Large Gate Length pMOS Current Source and Bias Filtering Technique for 5-GHz WLAN,” in 2007 International Symposium on Signals, Systems and Electronics, Montreal, QC, Jul. 2007.
[14] B. Razavi, "A study of phase noise in CMOS oscillators," IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, March 1996.
[15] P. Mirajkar, J. Chand, S. Aniruddhan, and S. Theertham, “Low Phase Noise Ku-Band VCO With Optimal Switched-Capacitor Bank Design,” IEEE Trans. VLSI Syst., vol. 26, no. 3, pp. 589–593, Mar. 2018.
[16] N. H. W. Fong et al., "A 1-V 3.8 - 5.7-GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology," IEEE Trans. Microw. Theory Techn., vol. 51, no. 8, pp. 1952-1959, Aug. 2003.
[17] P. Andreani and S. Mattisson, “A 2.4-GHz CMOS monolithic VCO based on an MOS varactor,” in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, vol. 2, No.99, pp. 557–560, USA, 1999.
[18] Y. -J. Chan, C. -F. Huang, C. -C. Wu, C. -H. Chen and C. -P. Chao, "Performance Consideration of MOS and Junction Diodes for Varactor Application," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2570-2573, Sept. 2007.
[19] P. Andreani and S. Mattisson, "On the use of MOS varactors in RF VCOs," IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[20] A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[21] R. Aparicio and A. Hajimiri, "A noise-shifting differential Colpitts VCO," IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[22] Seok-Ju Yun, So-Bong Shin, Hyung-Chul Choi and Sang-Gug Lee, "A 1mW current-reuse CMOS differential LC-VCO with low phase noise," ISSCC, Vol. 1, pp. 540-616, August 2005.
[23] P. Andreani and S. Mattisson, “A 2.4-GHz CMOS monolithic VCO based on an MOS varactor,” in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, Orlando, FL, USA, 1999, vol. 2, pp. 557–560.
[24] Y. Wang, J. Xu, K. He, M. Wu, and R. Zhang, “A 67.4–71.2-GHz nMOS-Only Complementary VCO With Buffer-Reused Feedback Technique,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 12, pp. 810–813, Dec. 2019.
[25] C.Barrett, ‘‘Fractional/Interger-N PLL Basics.pdf,’’1999.
[26] B. Razavi,Design of CMOS Phase-Locked Loop: From Circuit Level to Aechitecture Level, Cambridge University Press,2020.
[27] 蔡瑞昌,自動控制(第七版),全華書局,中華民國一百零七年十月。
[28] W. Rhee and A. Ali, “An on-chip phase compensation technique in fractional-N frequency synthesis,” in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, Orlando, FL, USA, 1999, vol. 3, pp. 363–366.
[29] Ö. Göksu, R. Teodorescu, C. L. Bak, F. Iov and P. C. Kjær, “Instability of Wind Turbine Converters During Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution,” IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1683–1691, Jul. 2014.
[30] Y. Matsuya and Y. Akazawa, “Multi-stage noise shaping technology and its application to precision measurement,” in Conference Record IEEE Instrumentation and Measurement Technology Conference, Metropolitan, NY, USA, 1992, pp. 540–544.
[31] 劉深淵、楊清淵,鎖相迴路(初版),滄海書局,中華民國一百零六年九月。
[32] B. Miller and R. J. Conley, “A multiple modulator fractional divider,” IEEE Trans. Instrum. Meas., vol. 40, no. 3, pp. 578–583, Jun. 1991.
[33] M. H. Perrott, M. D. Trott and C. G. Sodini, "A modeling approach for Sigma-Delta fractional-N frequency synthesizers allowing straightforward noise analysis," IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1028-1038, Aug. 2002.
[34] S. A. Osmany, F. Herzel, K. Schmalz, and W. Winkler, "Phase noise and jitter modeling for fractional-N PLLs, " Adv. Radio Sci., 5, 313–320, 2007.
[35] W.-H. Chen, M. E. Inerowicz, and B. Jung, “Phase Frequency Detector With Minimal Blind Zone for Fast Frequency Acquisition,” IEEE Trans. Circuits Syst. II, vol. 57, no. 12, pp. 936–940, Dec. 2010.
[36] C. Eichenberger and W. Guggenbuhl, "On charge injection in analog MOS switches and dummy switch compensation techniques," IEEE Trans. Circuits Syst., vol. 37, no. 2, pp. 256-264, Feb. 1990.
[37] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), Orlando, FL, USA, 1999, vol. 2, pp. 545–548.
[38] K Shu, E Sánchez-Sinencio, CMOS PLL synthesizers: analysis and design, Springer 2005.
[39] Bram De Muer and M. S. J. Steyaert, “On the analysis of ΔΣ fractional-n frequency synthesizers for high-spectral purity,” IEEE Trans. Circuits Syst. II, vol. 50, no. 11, pp. 784–793, Nov. 2003.
[40] X. Xu, X. Yang, and T. Yoshimasu, “2.4-GHz band ultra-low-voltage LC-VCO IC in 180-nm CMOS,” in IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, Singapore, Jun. 2015, pp. 13–16.
[41] X. Wang, X. Yang, X. Xu, and T. Yoshimasu, “2.4-GHz-band low-voltage LC-VCO IC with simplified noise filtering in 180-nm CMOS,” in IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, Mar. 2016, pp. 1–3.
[42] Y. Zhang et al., “A 5.8 GHz Implicit Class-F VCO in 180-nm CMOS Technology,” in IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Singapore, Dec. 2019, pp. 1170–1172.
[43] G. Huang, J. Zhang, Y. Wu and B. -S. Kim, "A multiband fractional-N PLL for IEEE802.11 a/b/g and GPS applications," in IEEE Asia-Pacific Microwave Conference (APMC), 2017, pp. 968-971.
[44] J. Jiang, T. Yan, D. Zhou, A. I. Karsilayan, and J. Silva-Martinez, “A 2.3-3.9 GHz Fractional-N Frequency Synthesizer with Charge Pump and TDC Calibration for Reduced Reference and Fractional Spurs,” in 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, Jun. 2021, pp. 71–74.
[45] X. Huang, B. Wang, W. Rhee, and Z. Wang, “A 5.4GHz ΔΣ Bang-Bang PLL with 19dB In-Band Noise Reduction by Using a Nested PLL Filter,” in 2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, Aug. 2020, pp. 1–2.
[46] Y. Zhang et al., “A Fractional-N PLL With Space–Time Averaging for Quantization Noise Reduction,” IEEE J. Solid-State Circuits, vol. 55, no. 3, pp. 602–614, Mar. 2020.