| 研究生: |
李宜諺 Li, Yi-Yan |
|---|---|
| 論文名稱: |
結合獵能與功率控制於四線圈式空間無指向性無線電能傳輸系統研究 A Study on Four-Coil Spatial Omnidirectional Wireless Power Transfer Combined with Energy Harvesting and Power Control |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 無指向性無線電能傳輸系統 、獵能技術 、四線圈耦合架構 |
| 外文關鍵詞: | Omnidirectional wireless power transfer, Energy harvesting, Four-Coil |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在結合獵能與功率控制於四線圈式空間無指向性無線電能傳輸,俾就環形空間區域中之無線感測節點裝置進行雙源式無線充電。本文所提系統係為包含饋電線圈電路、第一共振線圈網絡、第二共振線圈網絡與取電線圈電路之四線圈耦合架構,其中第二共振網絡為可接收雙源電能之雙頻複合諧振獵能電路。為達到無指向性無線電能傳輸,饋電線圈
電路由兩個彼此正交菱形線圈組成,並利用 FPGA 實現電流相位控制令傳輸線圈電流呈正交化,使得周圍磁場向量形成圓形磁場軌跡。經由實驗測量,在間距 30 公分環形空間內傳輸端對無線感測節點裝置作供電時,負載側接收電壓約為 4.4 V,接收功率 240 mW。在第二共振網絡接收第二發射源時,將電能儲存至 50 mF 超級電容。
This thesis is aimed to realize the four-coil spatial omnidirectional wireless power transfer combined with energy harvesting and power control. Dual source wireless charging for wireless sensor node devices in the spatial torus area. The system proposed in this thesis is a four-coil coupling structure including a feeding coil circuit, first resonant coil network, second resonant coil network and a power recieve coil circuit, in the second resonant network be a dual frequency composite resonance capable of receive dual source power energy harvesting circuit. In order to achieve omnidirectional wireless power transmission, the feeding coil circuit is composed of two mutually orthogonal diamond coils, and the current phase control is realized by FPGA to make the transmission coil current orthogonalize, so that the surrounding magnetic field vector forms a circular magnetic field trajectory. Through experimental measurement, when the transmission supplies power to the wireless sensor node device in an annular space with a distance of 30 cm, the receiving voltage on the load side is about 4.4 V, and the receiving power is 240 mW. When the second resonant network receives the second emission source, the power is stored to a 50 mF supercapacitor.
[1]“Wireless Sensor Networks : Types & Their Applications,” [Online]. Available at: https://www.elprocus.com/introduction-to-wireless-sensor-networks-types and applications/
[2]“ Wireless Sensors Versus Wired Sensors,” Sensor-Works, Inc., U. S. A. Online. Available at: https://www.sensor-works. com/wireless-sensors -versus- wired-sensors/
[3]“Qi (無線充電標準),” 維基百科,自由的百科全書,2020。 [Online]. Available at: https://zh.wikipedia.org / wiki/Qi_(無線充電標準)
[4]“東京大學研發充電房間,手機拿進去就會「自動充電」,” [Online]. Available at: https://buzzorange.com/techorange/2019/12/02/charging- room/
[5]“結合熱能與RF能量採集為超低功耗裝置供電,” [Online]. Availableat: https://www.eettaiwan.com/20200415ta31-thermal-and-rf-energy-harvesting -circuit-for-ultra-low-power-applications/
[6] M. Mabon, M. Gautier, B. Vrigneau, M. L. Gentil and O. Berder, “The Smaller the Better: Designing Solar Energy Harvesting,” in Wireless Communication and Mobile Computing : Wiley, 2019
[7] Xia. Li, Zhiyuan. Li, Cheng. Bi, Benxue. Liu and Yufeng. Su, “Study on wind energy harvest effect of a Vehicle-Mounted piezo electromagnetic hybrid energy harvest,” IEEE Access, vol. 8, pp. 167631-167646, Sep. 2020.
[8] T. Paing, J. Shin, R. Zane and Z. Popovic, “Resistor emulation approach to low-power RF energy harvesting,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1494-1501, May 2008.
[9] S. Chen, Y. Jin, and D. P. Arnold, “An active voltage doubling AC/DC converter for low-voltage energy harvesting applications,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2258-2265, May 2011.
[10] “Self-Powered Sensing Technology in Industrial IoT: UHF RFID Shows the Way,” EETimes, Inc., U. S. A. [Online] . Available at: https://www.eetimes.eu/self-powered-sensing-technology-in-industrial-iot-uhf-rfid-shows-the-way/
[11] “Long-Range Wireless Power Transfer for Industrial IoT,” EETimes, Inc., U. S. A. Online. Available at: https://www.eetimes.com/long-range -wireless-power -transfer-for-industrial-iot/
[12] H. Zhang, F. Lu, W. Liu, H. Hofmann, W. Liu, and C. C. Mi, “A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8541-8551, Dec. 2016.
[13] F. Lu, H. Zhang, and C. Mi, “A two-plate capacitive wireless power transfer system for electric vehicle charging applications,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 964-969, Feb. 2018.
[14] Y. Wu, Q. Chen, X. Ren, and Z. Zhang, “Efficiency optimization based parameter design method for the capacitive power transfer system,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 8774-8785, Aug. 2021.
[15] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[16] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 28-41, Mar. 2013.
[17] C. S. Wnag, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
[18] F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, “An Inductive and capacitive combined wireless power transfer system with LC-compensated topology,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8471-8482, Dec. 2016.
[19] B. Luo, T. Long, L. Guo, R. Dai, R. Mai, and Z. He, “Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3034-3042, May/Jun. 2020.
[20] X. Gao, C. Liu, H. Zhou, W. Hu, Y. Huang, Y. Xiao, Z. Lei, and J. Chen, “Design and analysis of a new hybrid wireless power transfer system with a space-saving coupler structure,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5069-5081, May 2021.
[21] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[22] P. Sergeant and A. Van Den Bossche, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1-7, Jan. 2008.
[23] J. T. Boys, G. A. J. Elliot, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[24] C. Park, S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, “Uniform power I-Type inductive power transfer system with DQ-power supply rails for on-line electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6446-6455, Nov. 2015.
[25] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18-36, Mar. 2015.
[26] J. Achterberg, E. A. Lomonova, and J. d. Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, May 2008.
[27] P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE ICIEA, 2011, pp. 520-525.
[28] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[29] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sept. 2011.
[30] K. O’Brien, ‘‘Inductively coupled radio frequency power transmission system for wireless systems,’’ Ph.D. dissertation, Dept. Elect. Eng., Techn. Univ. Dresden, Dresden, Germany, pp. 47–62.
[31] C. Zhang, D. Lin, and S. Y. Hui, “Basic control principles of omnidirectional wireless power transfer,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5215-5227, July 2016.
[32] D. Lin, C. Zhang, and S. Y. R. Hui, “Mathematical analysis of omnidirectional wireless power transfer-part-II three-dimensional systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 613-624, Jan. 2017.
[33] W. M. Ng, C. Zhang, D. Lin, and S. Y. R. Hui, “Two- and three-dimensional omnidirectional wireless power transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4470-4474, Sept. 2014.
[34] J. Feng, Q. Li, F. C. Lee, and M. Fu, “Transmitter coils design for free-positioning omnidirectional wireless power transfer system,” IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4656-4664, Aug. 2019.
[35] L. Tan, R. Zhong, Z. Tang, T. Huang, X. Huang, and T. Meng, “Power stability optimization design of three-dimensional wireless power transmission system in multi-load application scenarios,” IEEE Access, vol. 8, pp. 91843-91854, May 2020.
[36] Y. Lim and J. Park, “A novel phase-control-based energy beamforming techniques in nonradiative wireless power transfer,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6274-6287, Nov. 2015.
[37] Y. Lim, H. Ahn, and J. Park, “Analysis of antenna structure for energy beamforming in wireless power transfer,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 6085–6094, Nov. 2017.
[38] D. Lin, C. Zhang, and S. Y. R. Hui, “Mathematical analysis of omnidirectional wireless power transfer-part-I: two-dimensional systems,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 625- 633, Jan. 2017.
[39] H. Wang, C. Zhang, Y. Yang, R. H. W. Liang, and S. Y. Hui, “A comparative study on overall efficiency of 2-dimensional wireless power transfer systems using rotational and directional methods, IEEE Access,
[40] Q. Zhu, M. Su, Y. Sun, W. Tang, and A. P. Hu, “Field orientation based on current amplitude and phase angle control for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4758-4770, June 2018.
[41] M. Su, Z. Liu, Q. Zhu, and A. P. Hu, “Study of maximum power delivery to movable device in omnidirectional wireless power transfer system,” IEEE Access, vol. 6, pp. 76153-76164, Nov. 2018.
[42] H. Han, Z. Mao, Q. Zhu, M. Su, and A. P. Hu, “A 3D wireless charging cylinder with stable rotating magnetic field for multi-load application,” IEEE Access, vol. 7, pp. 35981-35997, Mar. 2019.
[43] J. Feng, Q. Li, M. Fu, and F. C. Lee, “Resonant converter with coupling and load independent resonance for omnidirectional wireless power transfer application,” in Proc. IEEE ECCE, 2017, pp. 1-5
[44] N. H. Van and C. Seo, “Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1358-1366, Feb. 2018.
[45] W. Han, K. T. Chau, C. Jiang, W. Liu, and W. H. Lam, “Design and analysis of quasi- omnidirectional dynamic wireless power transfer for fly-and-charge,” IEEE Trans. Magn., vol. 55, no. 7, July 2019.
[46] S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, “Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, July 2011.
[47] M. Kiani and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 2065-2074, Sept. 2012.
[48] H. Hao, G. A. Covic, and J. T. Boys, ‘‘An approximate dynamic model of LCL-T-based inductive power transfer power supplies,’’ IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5554-5567, Oct. 2014.
[49] Q. Zhu, L. Wang, Y. Guo, C. Liao, and F. Li, ‘‘Applying LCC compensation network to dynamic wireless EV charging system,’’ IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6557-6567, Oct. 2016.
[50] C. Cheng, F. Lu, Z. Zhou, W. Li, Z. Deng, F. Li, and C. Mi, ‘‘A load-independent LCC-compensated wireless power transfer system for multiple loads with a compact coupler design,’’ IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4507-4515, June 2020.
[51] W. Han, K. T. Chau, C. Jiang, W. Liu, and W. H. Lam, ‘‘High-order compensated wireless power transfer for dimmable metal halide lamps,’’ IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6269-6279, June 2020.
[52] 賴信安,應用於空間自由定位充電之近無指向性無線電能傳輸系統研究,國立成功大學電機工程學系碩士論文,2019年。
[53] 賴景明,應用四線圈多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
[54] 陳揚,四線圈式多環同軸型無線電能傳輸系統之匹配阻抗特性研究,國立成功大學電機工程學系碩士論文,2015年。
[55] 林奕維,應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2016年。
[56] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, July 2009.
[57] W. Q. Niu, J. X. Chu, W. Gu, and A. D. Shen, “Exact analysis of frequency splitting phenomena of contactless power transfer systems,” IEEE Trans. Circuits Syst. I., vol. 60, no. 6, pp. 1670-1677, June 2013.
[58] A. P. Sample, D. T. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011.
[59] Y. Zhang and Z. Zhao, “Frequency splitting analysis of two-coil resonant wireless power transfer,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 400-402, Feb. 2014.
[60] J. Zhang, X. Yuan, and C. Wang, “A study of three-coil magnetically coupled resonators for wireless power transfer,” in Proc. IEEE Int. Wireless Symp., 2015, pp. 1-4.
[61] 于順鏞,多負載於空間自由定位充電之無指向性無線電能傳輸研究,國立成功大學電機工程系碩士論文,2021年。
[62] W. X. Zhong, C. Zhang, X. Liu, and S. Y. R. Hui, “A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 933-942, Feb. 2015.
[63] J. Zhang, X. Yuan, C. Wang, and Y. He, “Comparative analysis of two-coil and three-coil structures for wireless power transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341-352, Jan. 2017.
[64] S. Kim, R. Vyas, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, “Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms,” in Proc. IEEE, 2014, pp. 1649-1666.
[65] A. Collado and A. Georgiadis, “Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna,“ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2225–2234, Aug. 2013.
[66] P. Jaffe and J. McSpadden, “Energy conversion and transmission modules for space solar power,“in Proc. IEEE, vol. 101, no. 6, pp. 1424-1437, Jun. 2013.
[67] 王頌堯,應用於獵取太陽能之具最大功率追蹤升壓型轉換器,國立成功大學電機工程學系碩士論文,2013年。
[68] G. Mahan, B. Sales, and J. Sharp, “Thermoelectric materials: New approaches to an old problem,“ Phys. Today, vol. 50, no. 3, pp. 42-47, Mar. 1997.
[69] 劉麗惠,「獵能技術」讓體溫發電--突破穿戴裝置續航問題--微型發電系統再進化,紡織月刊,2017年。
[70] H. S. Kim, J. H. Kim, and J. Kim, “A review of piezoelectric energy harvesting based on vibration,” International Journal of Precision and Manufacture, vol. 12, no 6, pp. 1129-1141, Dec. 2011.
[71] “第三波帶動家中Wi-Fi成長的動力是智慧家庭,” [Online]. Available at: https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=15909
[72] M. Danesh, and J. R. Long, “Photovoltaic antennas for autonomous wireless systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 807-811, Dec. 2011.
[73] I. Chaour, A. Fakhfakh, and O. Kanoun, “Enhanced passive RF-DC converter circuit efficiency for low RF energy harvesting,” Sensors., vol. 17, Jan. 2017.
[74] “超級電容器,” [Online]. Available at: http://www.tastones.com/zh -tw/tutorial/capacitors/ultracapacitors/
[75] eZ430-RF2500T Data Sheet User’s Guide, Texas Instruments inc., 2007.
[76] MICAz Data Sheet WIRELESS MEASUREMENT, Crossbow inc., 2005.
[77] 曾麒睿,無線電能傳輸系統之諧振網絡特性研究,國立成功大學電機工程學系碩士論文,2021年。
[78] Cyclone IV Device Datasheet, Intel/Altera inc., 2013.
[79] STM32G4 Series advance Arm®-based 32-bit MCUs Reference manual RM0440, STMicroelectronics inc., 2021.
[80] LTC3331 Data Sheet User’s Guide, Linear Technology inc., 2014.
校內:2027-08-05公開