簡易檢索 / 詳目顯示

研究生: 呂冠賢
Lu, Kuan-Hsien
論文名稱: 利用電化學沉積法對銅銦硒薄膜反應機構之研究
A study on Reaction Mechanism of CuInSe2 Thin Films through Electrodeposition
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 電鍍銅銦硒薄膜
外文關鍵詞: electrodeposition, CuInSe2
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗是以分層電鍍銅,銦,硒三種元素在鉬基板上來作為研究。首先本實驗發現電鍍銦在銅薄膜上時,會產生銅銦相與銦相共存,並且銦有聚集的現象。所以此時本實驗的研究目標分成了兩個部份來探討CIS不同反應機構的研究,第一個部份則是阻止銅銦相的生成,本實驗嘗試在銅薄膜上電鍍上硒後再電鍍銦,並且研究最佳的電鍍硒秒數能夠成功阻擋銅銦相的產生,並且探討一階段式熱處理與二階段式熱處理對於合成CIS薄膜的影響。第二個部份為走CIS反應機制的Type-III,先合成出穩定的Cu11In9化合物,再此化合物上電鍍一層硒。實驗研究不同的RTA熱處理溫度與持溫時間對CIS薄膜的影響,利用FE-SEM來觀察CIS薄膜表面的微結構變化,XRD來分析CIS的結晶性,並用拉曼來做輔助有無雜相的存在。
    實驗結果顯示以Cu11In9為初始相的CIS薄膜,其CIS的晶粒是比較大的,大約是在3μm~4μm之間。然而實驗結果也發現走這個路徑必須要用較高的RTA溫度,這樣所合成出的薄膜空洞與雜相會比較少。而本實驗也成功找出了電鍍硒的參數能夠成功阻擋銅銦相的產生。實驗發現利用兩階段式熱處理對於此路徑所合成出的CIS結構有很大的變化。實驗最後嘗試把整個元件製作出來,並且利用IV curve的測量,來研究元件中各層的鍍膜對於整個元件PN接面的影響。

    In the research, we found the existence of Cu-In phase while electrodepositing indium onto copper layer. Therefore, our experiment separated into two routes. The first route was to prevent the formation of Cu-In phase by electrodepositing a selenium thin film between the Cu and In layer. The effect of two steps thermal treatment was also took into discussion in route two. The second route was to form steady Cu11In9 compound following an electrodeposition of selenium layer, and through RTA process we obtained a stiochiometric CuInSe2 compound. Furthermore, we study the effect of RTA temperature on the microstructure of CuInSe2 thin films. The crystal structure of the thin films was identified by powder x-ray diffraction (XRD). Raman spectroscopy was applied for analysis of second phases. The microstructure was observed by scanning electron microscope (SEM).
    The SEM image of Cu11In9 thin films showed that the grain size was about 3μm~4μm. And we also found that higher temperature was need in route one to form CuInSe2 thin films of good quality. In route two, electrodeposited selenium with enough thickness could prevent the formation of Cu-In phase, and the film quality became better through two steps thermal treatment. By IV curve measurement we understood the characteristic of PN junction in the cell.

    目錄 摘要 II Abstract III 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 背景 1 1-2 研究動機與目的 4 第二章 文獻回顧與原理 6 2-1電鍍原理 6 2-1-1 電流效率 6 2-1-2 電鍍電極介紹[15] 7 2-1-3 光滑與平整性 8 2-2 循環伏安法 9 2-3 單一元素的電化學行為[12] 11 2-4二硒化銅銦薄膜介紹 14 2-5 由銅銦相合成二硒化銅銦薄膜 17 2-6太陽電池工作原理[21] 19 第三章 實驗方法與步驟 25 3-1實驗材料 25 (a)實驗鈀材(Sputtering Target) 25 (b)基板(Substrates) 25 (c)濺鍍及退火使用氣氛(Gas Ambient) 25 (d)藥品 25 3-2實驗流程與規劃 26 3-2-1 電鍍路徑示意圖 27 3-2-2清洗基板 28 3-2-3濺鍍鉬背電極 28 3-2-4配製電鍍液 28 3-2-5電鍍CIS 28 3-2-6化學水浴法鍍製硫化鎘 29 3-2-7製備ZnO層與AZO層 30 3-2-8製備上電極Ni層 30 3-3實驗設備與分析儀器 31 3-3-1恆電位儀與電鍍系統 31 3-3-2快速退火爐(Rapid Thermal Annealing) 32 3-3-3薄膜濺鍍系統(Sputtering System ) 33 3-3-4掃描式電子顯微鏡[35](Scanning Electron Microscope ; SEM) 34 3-3-5能量分散光譜儀[35](Energy Dispersive Spectroscopy;EDS) 35 3-3-6 X-Ray粉墨繞射儀[36] (Powder X-ray Diffraction) 36 3-3-7拉曼光譜儀[35] 36 3-3-8原子力顯微鏡 (Atomic Force Microscopy;AFM)[38] 37 3-3-9 α-step 膜厚計 38 3-3-10 四點探針[39] 39 第四章 實驗結果與討論 40 4-1銅銦相的存在 40 4-2 消除銅銦相 42 4-2-1 找出最佳電鍍硒的秒數 43 4-3 由銅硒銦合成CIS (Route I) 49 4-3-1 CA結構與CH結構 52 4-3-2 兩階段式熱處理 57 4-4 由銅銦相化合為二硒化銅銦 (Route II) 65 4-4-1 銅二硒相的存在 77 4-5 元件製作 79 4-5-1 硫化鎘的覆蓋 79 4-5-2 IV curve的測量 82 4-5-3 元件效率的測量 91 第五章 結論 92 第六章 參考文獻 94

    [1] D. Lidgate, Engineering Science and Education Journal, 1,221-227, (1922).
    [2] 楊宏澤,”太陽能發電系統與工程上課講義”,2008
    [3] 邱秋燕,廖曰淳,楊慕震,黃渼雯,羅一玲,銅銦鎵硒太陽電池-非真空製程技術發展簡介,工業材料雜誌,264, (2008)
    [4] Yang, J., et al., Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency. 26 PVSC, 563-568, (1997)
    [5] Mitchell, K.W., et al., CuInSe2 cells and modules, IEEE transaction on electron devices, 37, 410-417, (1990).
    [6] Dimmler, B., M. Powalla, and H.W. Schock, CIS-based thin film photovoltaic modules: Potential and prospects. Prog. Photovolt: Res. Appl., 10, 149-157, (2002).
    [7] Chu, N. and D. Honeman, Solar cells, 31, 197(1991)
    [8] S. Jost, F. Hergert, R. Hock, J. Schulze, A. Kirbs, T. VoX and M. Purwins, The formation of CuInSe2 thin film solar cell absorbers from electroplated precursors with varying selenium content, Solar Energy Materials & Solar Cells, 91, 1669–1675 (2007)
    [9] M. Gossla, H. Metzner, and H.-E. Mahnke, Coevaporated Cu–In films as precursors for solar cells, Journal of Applied Physics, 86, 3624-3632 (1999)
    [10] K.T. Ramakrishna Reddy, I. Forbes, R.W. Miles, M.J. Carter and P.K. Dutta, Materials Letters, 37, 57–62 (1998)
    [11] L. L. Kerr. S. Kim, S. Kincal. M. Ider, S. Yoon, and T. J. Anderson, IEEE, 0-7803-7471-1/02, 676-679 (2002)
    [12] 陳譽升, “以分層電鍍銅銦硒薄膜製備二硒化銅銦太陽能電池之研究”, 成功大學 (2009)
    [13] G. Sasikala, S. Moorthy Babu and R. Dhanasekaran, Electrocrystallization and characterization of CuInSe, thin films, Mater. Chem. Phys., 42, 210 (1995)
    [14] M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2nd ed. (Wiley, New Jersey, 2006)
    [15] 胡啟章, 電化學原理與方法, 1st ed. (五南圖書出版, 台北, 2002)
    [16] S. Beyhan, S. Suzer, F. Kadırgana, Complexing agent effect on the stoichiometric ratio of the electrochemically prepared CuInSe2 thin films, Solar Energy Materials & Solar Cells, 91, 1922 (2007)
    [17] Mitchell, K.W., et al., CuInSe2 cells and modules, IEEE transaction on electron devices, 37(2), 410-417, 1990.
    [18] Adolf Goetzberger, Christopher Hebling, Photovoltaic materials, past, present, future, Solar Energy Materials & Solar Cells, 62, 1(2000)
    [19] L. Kaupmees, M. Altosaar, O. olubujeva, E. Mellikov, Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO, Thin Solid Films, 515,5891 (2007)
    [20] R. Klenk, J. Klaer, R. Scheer, M.Ch. Lux-Steiner, I. Luck, N. Meyer, U. Rqhle, Solar cells based on CuInS2—an overview, Thin Solid Films, 509, 480–481(2005)
    [21] 林明獻, 太陽電池入門技術, 2nd ed. (全華圖書股份有限公司, 台北, 2008)
    [22] J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction, Journal of Applied Physics, 87, 3683 (2000)
    [23] N.B. Chaure, J. Young, A.P. Samantilleke and I.M. Dharmadasa, Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications, Sol. Energy Mater. Sol. Cells, 81, 125 (2004)
    [24] N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young and I.M. Dharmadasa, Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells, Thin Solid Films , 472, 212 (2005)
    [25] F.O. Adurodija, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, S.H. Yoon and B.T. Ahn, Growth of CuInSe2 thin film by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container, Thin Solid Films, 338, 13-19 (1999)
    [26] O. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees and P. Barvinschi, SEM analysis and selenization of Cu–In alloy films produced by co-sputtering of metals, Solar Energy Materials & Solar Cells 93,11–14 (2009)
    [27] T. L. Chu and Shirley S. Chu, Large Grain Copper Indium Diselenide Films, Solid-State Science and Technology, 131, 2182 (1984)
    [28] Frederick Adurodija, Jinsoo Song, Seok Ki Kim, Ki Hwan Kang and Kyung Hoon Yoon, CuInSe2 Thin Films Prepared from High-Vapor Selenization of Co-sputtered Cu-In Precursor Layers, Journal of the Korean Physical Society, 32, 87-92 (1998)
    [29] Sang Deok Kim and Hyeong Joon Kim, Characteristics of CuInSe2 Thin Films Grown by the Selenization Method, Journal of the Korean Physical Society, 35, 403-405 (1999)
    [30] D. Braunger, D. Hariskos, G. Bilger, U. Rau and H.W. Schock, Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films, 361, 161(2000)
    [31] O. Roussel, O. Ramdani, E. Chassaing, P.P. Grand, M. Lamirand, A. Etcheberry, O. Kerrec, J.F. Guillemoles, and D. Lincota, First Stages of CuInSe2 Electrodeposition from Cu(II)-In(III)-Se(IV) Acidic Solutions on Polycrystalline Mo Films, Journal of The Electrochemical Society, 155, D141 (2008)
    [32] T. P. Gujar, V. R. Shinde, Jong-Won Park, Hyun Kyung Lee, Kwang-Deog Jung and Oh-Shim Joo, Characterization of Electrochemically Grown Crystalline CuInSe2 Thin Films, Journal of The Electrochemical Society, 156, E8 (2009)
    [33] A. Romeo, M.Terheggen, D.Abou-Ras, D.L.Batzner, F.-J.Haug, M.Kalin, D.Rudmann and A. N. Tiwari, Prog. Photovolt: Res. Appl., 12, 97 (2004)
    [34] Capasso, F. and G. Maragaritondo, Heterojunction band, discontinuities: Physics and device application. Elsevier science (1987)
    [35] 汪建民,材料分析,1st ed.(中國材料科學學會,新竹,1998)
    [36] 林麗娟, X光繞射原理及其運用, 工業材料, 86, 101(1994)
    [37] N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young and I.M. Dharmadasa, Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells, Thin Solid Films , 472, 212 (2005)
    [38] A. D. L. Humphris, M. J. Miles, and J. K. Hobbs, A mechanical microscope, High-speed atomic force microscopy, Applied Physic Letters, 86, 034106 (2005)
    [39] D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, (McGraw-Hill, New York, USA, 1995)
    [40] J. Łaz ˙ewski, H. Neumann, K. Parlinski, G. Lippold, B. J. Stanbery, Lattice dynamics of CuAu-ordered CuInSe2, Physical Review, 68, 144108 (2003)
    [41] J. Parkes, R.D. Tomlinson, and M.J. Hampshire, J. Appl. Crystal-logr. 6, 414, (1973)
    [42] H.W. Spiess, V. Haeberlen, G. Brandt, A. Ra ¨uber, and J.Schneider, Phys. Status Solidi B , 62, 183 (1974)
    [43] J. M. Merino, J.L. Martin de Vidales, S. Mahanty, R. Diaz and F.Rueda, J. Appl. Phys., 80, 5610 (1996)
    [44]O. A.Balitskii, V. P. Savchyn and V. O. Yukhymchuk, Semicond. Sci. Technol., 17, 1-4 (2002)
    [45] Víctor Izquierdo-Roca1, Edgardo Saucedo, Phys. Status Solidi, 206, 1001 –1004 (2009)

    無法下載圖示 校內:2015-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE