簡易檢索 / 詳目顯示

研究生: 李志泓
Lee, Chih-Hung
論文名稱: 應用於生理訊號監控系統具高能量轉換效率整流器與低溫度係數帶隙參考電壓之手機電源擷取界面
A Powering Interface of Smartphone with High-Power-Conversion-Efficiency Rectifier and Low-Temperature-Coefficient Bandgap Voltage Reference for Biomedical Signal Monitoring System
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 電源管理系統耳機孔整流器線性穩壓器參考電壓能量擷取
外文關鍵詞: Power management, Headphone jack, Rectifier, Regulator, Bandgap voltage reference
相關次數: 點閱:191下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為應用於生理訊號擷取系統且具備手機耳機孔電源轉換介面之電源管理系統,在此提出一個具備高能量轉換效率全波橋式整流器、低功耗穩壓器及低溫度係數參考電壓之電源管理系統。整體電路設計目標皆朝向低功耗與高能量轉換效率,目的為達到長時間的應用。本論文分為兩個版本,第一個版本包含整流器及穩壓器,第二個版本除了整流器及穩壓器以外,加入參考電壓電路,使其成為完整的電源管理系統。
    第一個版本中,提出一個高能量轉換效率全波橋式整流器及低功耗穩壓器,利用手機透過耳機孔聲道產生能量,經由整流器將音頻交流訊號轉成直流電壓,並將主動整流器概念帶入被動整流器中,減少不必要的漏電流,以提升電壓和能量轉換效率。然而,為了確保後端電路的供應電壓穩定在1.2 V,在整流器輸出串接一個低功耗線性穩壓器,此穩壓器特色為低負載電容,因此可減少印刷電路板面積,並採用假電阻實現回授電阻,達到低功耗之目的,此外,利用電壓緩衝器及零點追蹤技術提高電路穩定度與操作頻寬。由量測結果得知整流器在負載阻抗為2 kΩ,輸入電壓擺幅為1.77 VP-P條件下,能量轉換效率可達到87.2%,而穩壓器在輸入電壓為1.5 V,負載電流為1 mA條件下,功率消耗為27.25 μA。
    第二個版本中,為了提供穩壓器一個穩定的參考電壓,本論文提出一個低溫度係數且低功耗之帶隙參考電壓電路,由於一階溫度補償後之輸出電壓仍有二階溫度效應,故採用一個操作在弱反轉區之低功耗參考電壓進行二階曲率溫度補償,使其補償後之輸出電壓更接近零溫度係數。由量測結果可知,輸入電壓在1.5 V,溫度範圍在-10℃到125℃的條件下,溫度係數可達30.95 ppm/ºC,功率消耗為3.6 μW。
    上述兩顆晶片皆採用TSMC 0.18μm 1P6M CMOS製程實現,第一版晶片面積762 μm×637 μm,第二版晶片面積為885 μm×908 μm。

    In this study, a high-efficiency low-temperature-coefficient (TC) power management for harvesting energy from a headphone jack is proposed. This type of power management system is composed of a full-wave low-voltage active rectifier, a low-dropout voltage (LDO) regulator and a current-mode bandgap voltage reference (BGR). The proposed BGR with a curvature-compensation can be achieved temperature coefficient of 15.33 ppm/℃ over the temperature range of 65 ℃. The proposed rectifier achieves a maximum measured power conversion efficiency of 87.2% under low 1.77 Vpp AC input signal with a 2 kΩ output load resistance. The power consumption of BGR is 3.6 μW because the compensation circuit is operated in sub-threshold region.

    摘要 I 誌謝 IX 章節目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究方法與目的 3 1.3 論文架構 5 第二章 能量轉換介面探討 6 2.1 播放測試軟體及耳機孔參數 6 2.2 交流-直流轉換器 8 2.1.1 電壓幫浦 8 2.1.2 全波橋式整流器 10 2.3 穩壓器之重要參數 12 2.3.1 輸出電壓差(Dropout Voltage) 14 2.3.2 靜態電流(Quiescent Current) 15 2.3.3 能量轉換效率(Power Conversion Efficiency) 17 2.3.4 導通元件(Pass Element) 17 2.3.5 線性調節率(Line Regulation) 18 2.3.6 負載調節率(Load Regulation) 19 2.3.7 頻率響應(Frequency Response) 21 2.3.8 暫態響應(Transient Response) 24 2.3.9 電源拒斥比(Power Supply Rejection Ratio) 26 2.3.10 輸出雜訊(Output Noise) 27 2.4 帶隙參考電壓電路介紹 28 2.4.1 帶隙參考電壓電路概念 28 2.4.2 與絕對溫度成正相關之電壓 29 2.4.3 基於運算放大器乘β型態之帶隙參考電壓電路 31 第三章 電源管理系統分析與設計 34 3.1 自適應靴帶全波橋式整流器 34 3.1.1 降低對基板漏電流機制 35 3.1.2 降低壓降電壓技術 37 3.1.3 主動式整流器 41 3.2 低壓降線性穩壓器 43 3.2.1 假電阻 43 3.2.2 電壓緩衝器 45 3.2.3 極零點追蹤技術 47 第四章 曲率補償之帶隙參考電壓電路 49 4.1 雙極性接面型電晶體的高階效應[21] 49 4.2 操作在低於1 V之帶隙參考電壓電路[25] 51 4.3 操作於弱反轉區之帶隙參考電壓電路[26] 54 4.4 高階溫度曲率補償之帶隙參考電壓電路 58 第五章 模擬與量測 60 5.1 電源管理系統之電路模擬(T18-105A-A0062) 60 5.1.1 全波橋式整流器 60 5.1.2 低壓降線性穩壓器 65 5.1.3 佈局考量與電源管理系統 68 5.2 電源管理系統之晶片量測(T18-105A-A0062) 70 5.2.1 全波橋式整流器 70 5.2.2 低壓降線性穩壓器 73 5.2.3 電源管理系統 77 5.2.4 晶片與PCB照相圖 78 5.3 電源管理系統之電路模擬(T18-106A-A0039) 79 5.3.1 帶隙參考電壓電路 79 5.3.2 佈局考量與電源管理系統 81 5.4 電源管理系統之晶片量測(T18-106A-A0039) 83 5.4.1 帶隙參考電壓電路 83 5.4.2 電源管理系統 84 5.4.3 晶片與PCB照相圖 86 5.5 相關文獻規格比較 87 第六章 結論與未來研究方向 88 6.1 結論 88 6.2 未來方向 89 參考文獻 90

    [1] F. Axisa, P. M. Schmitt, C. Gehin, G. Delhomme, E. McAdams, and A. Dittmar, “Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention,” IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 3, pp. 325-336, Sep. 2005.
    [2] S. Y. Lee, J. H. Hong, C. H. Hsieh, M. C. Liang, and J. Y. Kung, “A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 3, pp. 256-265, Jun. 2013.
    [3] C. H. Hsieh, C. Y. Du, and S. Y. Lee, “Power management with energy harvesting from a headphone jack,” IEEE International Symposium on Circuits and Systems, Jun. 2014, pp. 1989-1992.
    [4] http://www.who.int/mediacentre/factsheets/fs310/en/
    [5] 霍特式心電圖,Available: http://en.wikipedia.org/wiki/Holter_monitor
    [6] PC-80B快速心電檢測儀,Available: http://www.healforce.com/hk/index.php?ac=article&at=read&did=394
    [7] http://www.idc.com.tw/about/502.html
    [8] D. Hilbiber, “A new semiconductor voltage standard,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 1964, pp. 32-33.
    [9] R. E. Barnett, J. Liu, and S. Lazar, “A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 354-370, Feb. 2009.
    [10] S. Mandal, and R. Sarpeshkar, “Low-power CMOS rectifier design for RFID applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no.6, pp. 1177-1188, Jun. 2007.
    [11] A. Facen and A. Boni, “Power supply generation in CMOS passive UHF RFID tags,” Ph. D. Research in Microelectronics and Electronics, Jun. 2006, pp. 33-36.
    [12] T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 35-41, Jan. 2006.
    [13] T. Lehmann and M. Cassia, “1-V power supply CMOS cascode amplifier,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1082-1086, Jul. 2001.
    [14] C. Peters, J. Handwerker, F. Henrici, M. Ortmanns, and Y. Manoli, “Experimental results on power efficient single-poly floating gate rectifiers,” IEEE International Symposium on Circuits and Systems, May 2009, pp. 1097-1100.
    [15] M. Ghovanloo and K. Najafi, “Fully integrated wideband high-current rectifiers for inductively powered devices,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1976-1984, Nov. 2004.
    [16] T. T. Le, J. Han, A. v. Jouanne, K. Mayaram, and T. S. Fiez, “Piezoelectric micro-power generation interface circuits,” IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1411-1420, Jun. 2006.
    [17] S. S. Hashemi, M. Sawan, and Y. Savaria, “A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 326-335, Aug. 2012.
    [18] H. K. Cha, W. T. Park, and M. Je, “A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 7, pp. 409-413, Jul. 2012.
    [19] S. K. Lau, K. N. Leung, and P. K. T. Mok, “Analysis of low-dropout regulator topologies for low-voltage regulation,” IEEE Conference on Electron Devices and Solid-State Circuits, Dec. 2003, pp. 379-382.
    [20] K. C. Kwok and P. K. T. Mok, “Pole-zero tracking frequency compensation for low dropout regulator,” IEEE International Symposium on Circuits and Systems, Aug. 2002, pp. 735-738.
    [21] Y. P. Tsividis, “Accurate analysis of temperature effects in IC-VBE characteristics with application to bandgap reference sources,” IEEE Journal of Solid-State Circuits, vol. 15, no. 6, pp. 1075-1084, Dec. 1980.
    [22] S. M. Sze, Physics of Semiconductor Devices. New York: Wiley, 1969.
    [23] K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
    [24] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. New York: Wiley, 1977.
    [25] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. Sakui, “A CMOS bandgap reference circuit with sub-1-V operation,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 670–674, May 1999.
    [26] K. K. Lee, T. S. Lande, and P. D. Hafliger, “A sub-μW bandgap reference circuit with an inherent curvature-compensation property,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 1-9, Jan. 2015.
    [27] H. M. Lee and M. Ghovanloo, “An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively-powered applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 8, pp. 1749-1760, Aug. 2011.
    [28] Y. K. Lo, K. Chen, P. Gad, and W. Liu, “An on-chip multi-voltage power converter with leakage current prevention using 0.18 µm high-voltage CMOS process,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 163-174, Feb. 2016.
    [29] B. D. Yang, “250-mV supply subthreshold CMOS voltage reference using a low-voltage comparator and a charge-pump circuit,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 850-854, Nov. 2014.
    [30] X. L. Tan, P. K. Chan, and U. Dasgupta, “A sub-1-V 65-nm MOS threshold monitoring-based voltage reference,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 10, pp. 2317-2321, Oct. 2015.
    [31] H. M. Lee and M. Ghovanloo, “A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 3, pp. 213-224, Jun. 2013.
    [32] 龔靖洋, "應用於身體感測網路之 13.56MHz射頻前端電路設計," 碩士, 電機工程所, 國立中正大學, 2011.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE