簡易檢索 / 詳目顯示

研究生: 王啟銘
Wang, Chi-Ming
論文名稱: 探討潮波與逆向流交互作用之影響
The Interaction between Tidal Bore and Opposing Current
指導教授: 蕭士俊
Hsiao, Shih-Chun
共同指導教授: 陳陽益
Chen, Yang-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 51
中文關鍵詞: 潮波逆向流表面波形流速與潮波波速之比水工模型試驗
外文關鍵詞: Tidal bore, Opposing current, The ratios of current velocity and bore celerity, Bore shapes, Hydraulic experiment
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在潮波湧入至河川中的現象,在近幾年來已有許多學者針對此行為進行探討,在往昔的研究中討論到潮波傳播時的動力學行為與影響,不少皆以潮波福祿數為基準去研究,對於福祿數關係式中的潮波波速與流速卻很少去探究。本文以試驗方式探討潮波與逆向流交互作用之特性變化,包含表面波形、峰值大小與流速之間的變化。將試驗分為靜水狀態與存在逆向流的環境,在固定平均水深及不同的速度比Vo⁄U(流速與潮波波速之比)之試驗條件下進行試驗,並在潮波前進路徑密集擺設波高計,對其表面波形的變化作詳細的測量。
    試驗結果發現Vo⁄U流速與潮波波速之比會影響潮波呈現的表面波形與峰值,尤其是當以Vo⁄U與1的關係去切入時,能將其影響區分為三種不同的情形,在Vo⁄U≥1時,能夠從表面波形觀測到除了主峰以外的第二峰值,而在Vo⁄U<1時,則看不見此現象,而主峰值的大小也會隨著前進距離增加,在不同的流速與潮波波速條件下,有不同的趨勢變化,而由流速的時序列中可清楚對照峰值發生變化的瞬間與持續時間,有非常一致的關係。

    For this paper we conducted a hydraulic experiment to study the interaction between tidal bore and opposing current. Under different normalized amplitude ratios (Vo/U, initial current velocity over tidal bore celerity), we analyzed bore shapes, bore amplitude, and variations in current velocity caused by the interaction between the tidal bore and the opposing current. We used wave gauges and an electromagnetic current meter to conduct the experiment in a 15m smooth flume, as well as setting additional intensive wave gauges to record detailed bore shapes.
    We found that normalized amplitude ratios (Vo/U) play a significant role in [in what? Wave formation?]. At lower normalized amplitude ratios (Vo/U <1), we clearly observed a second peak among the mean jump and the whelps. Bore amplitudes rose at the start and fell as the tidal bore was propagated; the final value measured was close to the starting one.

    中文摘要 I 英文摘要 II 誌謝 X 表目錄 XIII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究方法 6 1.4 本文架構 6 第二章 水工模型試驗 8 2.1 試驗設備 8 2.2 試驗配置 13 2.3 試驗方法及步驟 15 第三章 試驗結果與討論 19 3.1 馬達轉速與流速分布穩定性之驗證 20 3.2 靜水條件時潮波之表面波形與峰值之變化 23 3.3 潮波與逆向流交互作用之表面波形與峰值之變化 29 3.4潮波與逆向流交互作用之流速變化 37 3.4.1 速度時序列之變化 37 3.4.2 Vy下降與Vx上升的幅度變化 41 第四章 結論與建議 47 4.1 結論 47 4.2 建議 48 參考文獻 49

    1. Benjamin, T. B., and M. J. Lighthill (1954), On cnoidal waves and bores, Proc. R. Soc. London, Ser. A, 224(1159), 448–460.
    2. Bonneton, N., P. Bonneton, J.-P. Parisot, A. Sottolichio, and G. Detandt(2012), Tidal bore and Mascaret—Example of Garonne and Seine Rivers, C. R. Geosci., 344, 508–515.
    3. Bonneton, P., J. Van de Loock, J.-P. Parisot, N. Bonneton, A. Sottolichio, G. Detandt, B. Castelle, V. Marieu, and N. Pochon (2011a), On the occurrence of tidal bores—The Garonne River case, J. Coastal Res., SI 64, 11,462–11,466.
    4. Bonneton, P., J.-P. Parisot, N. Bonneton, A. Sottolichio, B. Castelle, V. Marieu, N. Pochon, and J. Van de Loock (2011b), Large amplitude undular tidal bore propagation in the Garonne River, France, paper presented at the 21st ISOPE Conference.
    5. Bonneton, P., E. Barthelemy, F. Chazel, R. Cienfuegos, D. Lannes, F. Marche, and M. Tissier (2011c), Recent advances in SerreGreen Naghdi modelling for wave transformation, breaking and runup processes, Eur. J. Mech. B Fluids, 30(6), 589–597.
    6. Chanson, H. (2009), Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results, Eur. J. Mech. B Fluids, 28(2), 191–210.
    7. Chanson, H. (2012), Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations, World Sci., Singapore.
    8. Chanson, H., D. Reungoat, B. Simon and P. Lubin (2011), High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore, Estuarine Coastal Shelf Sci., 95(2), 298–306.
    9. Chanson, H. (1995). "Flow Characteristics of Undular Hydraulic Jumps. Comparison with Near-Critical Flows." Report CH45/95, Dept. of Civil Engineering, University of Queensland, Australia, June, 202 pages (ISBN 0 86776 612 3).
    10. Chanson, H. (2008a). "Turbulence in Positive Surges and Tidal Bores. Effects of Bed Roughness and Adverse Bed Slopes." Hydraulic Model Report No. CH68/08, Div. of Civil Engineering, The University of Queensland, Brisbane, Australia, 121 pages & 5 movie files.
    11. Chanson, H. (2009). "Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows." CRC Press/Balkema, Taylor & Francis Group, Leiden, The Netherlands, 478 pages.
    12. Chanson, H., and Montes, J.S. (1995). "Characteristics of Undular Hydraulic Jumps. Experimental Apparatus and Flow Patterns." Jl of Hyd. Engrg., ASCE, Vol. 121, No. 2, pp. 129-144. Discussion : Vol. 123, No. 2, pp. 161-164.
    13. Favre, H. (1935). "Etude Théorique et Expérimentale des Ondes de Translation dans les Canaux Découverts." ('Theoretical and Experimental Study of Travelling Surges in Open Channels.') Dunod, Paris, France (in French).
    14. Furgerot, L., D. Mouaze, B. Tessier, L. Perez, and S. Haquin (2013), Suspended sediment concentration in relation to the passage of a tidal bore (See River estuary, Mont Saint Michel Bay, NW France), in Proceedings of Coastal Dynamics 2013, edited by P. Bonneton and T. Garlan, pp. 671–682.
    15. Hornung, H.G., Willert, C., Turner, S. (1995). The flow field downsteam of a hydraulic jump. J. Fluid Mech. 287, 299–316.
    16. Huang Jing, Pan Cun-hong and Chen Gang et al. Experimental simulation and validation of the tidal bore in the flume[J]. Hydro-Science and Engineering, 2013, (2): 1-8(in Chinese).
    17. Koch, C., Chanson, H. (2005). An experimental study of tidal bores and positive surges: Hydrodynamics and turbulence of the bore front. Report No. CH56/05, Department of Civil Engineering, The University of Queensland, Brisbane, Australia, July, 170.
    18. Lemoine, R. (1948), Sur les ondes positives de translation dans les canaux et sur le ressaut ondule de faible amplitude, La Houille Blanche, 2, 183–185.
    19. Longuest-Higgins,M.S.,and Stewart, R.W.(1960).Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 8,pp. 565-583.
    20. Lynch, D. K. (1982), Tidal bores, Sci. Am., 247, 146–156.
    21. Madsen, P. A., H. J. Simonsen, and C. H. Pan (2005), Numerical simulation of tidal bores and hydraulic jumps, Coastal Eng., 52(5), 409–433
    22. Malandain, J.J. (1988). "La Seine au Temps du Mascaret." ('The Seine River at the Time of the Mascaret.') Le Chasse-Marée, No. 34, pp. 30-45 (in French).
    23. Montes, J.S., Chanson, H. (1998). Characteristics of undular hydraulic jumps. Results and calculations. J. Hydraul. Engrg., ASCE 124(2), 192–205.
    24. Serre, F. (1953), Contribution a l’etude des ecoulements permanents et variables dans les canaux, La Houille Blanche, 8(6), 830–872.
    25. Tissier, M., P. Bonneton, F. Marche, F. Chazel, and D. Lannes, (2011), Nearshore dynamics of tsunami-like undular bores using a fully nonlinear Boussinesq model, J. Coastal Res., SI 64, 603–607.
    26. Treske, A. (1994), Undular bore (Favre-waves) in open channels—Experimental studies, J. Hydraul. Res., 32(3), 355–370.
    27. Wolanski, E., D. Williams, S. Spagnol and H. Chanson (2004), Undular tidal bore dynamics in the Daly Estuary, Northern Australia, Estuarine Coastal Shelf Sci., 60(4), 629–636.
    28. Uncles, R. J., J. A. Stephens, and D. J. Law (2006), Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK: Flocs, fluid mud, stationary suspensions and tidal bores, Estuarine Coastal Shelf Sci., 67, 30–52.

    下載圖示 校內:2019-07-01公開
    校外:2019-07-01公開
    QR CODE