| 研究生: |
陳俊嘉 CHEN, CHUN-CHIA |
|---|---|
| 論文名稱: |
模擬浮子位移與功率應用於波浪發電之研究 Numerical Simulation of Floating Body Displacement and Power on the Wave Energy System |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun 許泰文 Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 直推式造波機 、阻尼係數 、附加質量 、規則波 、波浪發電 |
| 外文關鍵詞: | damping coefficient, added mass, piston-type wavemaker, wave energy, regular wave |
| 相關次數: | 點閱:184 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用數值與實驗方法,模擬在規則波中的波浪發電系統。發電過程為波浪推動浮子,浮子帶動活塞,透過活塞壓縮空氣,空氣傳輸到恆壓桶,保持一定的輸出氣體至發電裝置上而產生電能。浮子運動振幅越大,甚至發生共振現象,用以壓縮更多空氣,讓發電裝置吸收更多的波浪能量。
數值的部分,透過基本解求出流速勢,推估壓力後求得外力,計算外力時得到附加質量與阻尼係數,代入水中運動方程式得知浮子位移。將浮子隨時間變化的位移代入功率方程式,初步推估浮子吸收的功率。
實驗的部分,浮子上方未加入發電裝置,將浮子固定於長300公尺、寬5公尺、深5.2公尺的水槽中。利用直推式造波機產生規則波,造波週期為2.5秒到8秒,波高為0.2公尺到1公尺,紀錄浮子位移並推算功率。
文中分別模擬飛碟形與水塔型兩種不同外型的浮子,並經過實驗與數值的比較後發現,浮子振幅大小與浮體重量與入射波週期有關。週期大時,浮子會隨著波浪起伏,而週期小時,因入射波頻率與浮子震盪頻率相同而產生共振效應。由本文研究發現,水塔型浮子於小週期時有明顯的共振現象,因而判斷此為最佳外型。
本文更進一步,在重量與週期相同的條件下,修改水塔外型的浮子,以判斷其最佳外型。模擬結果發現當水塔型沒水部分切割一半時,其運動振幅最大,因而判斷此為最佳外型設計。
This study aims to simulate the floating body motion on the wave energy system both numerically and experimentally. Driven by regular wave action, the floating body drives the upward piston, alternatively pressurizing the air within the chamber, leading the air into the static pressure controller. Consequently, the air will be consistently pressurized and output into the turbine-generator to generate electrical power.
To simulate the floating body motion numerically, velocity potential can be gained through fundamental solution. The pressure and force acting in the floating body can thus be obtained. Base on the force, the added mass and damping coefficient can be calculated and coupled with underwater motion equation to simulate the floating body motion. Eventually, a time-dependent floating body displacement is utilized to calculate how much power has been generated.
Experimentally, the floating body design verifies the accuracy of the simulation result. No other device is added onto the floating body in this study and it is fixed in a tank. Regular wave is generated by a piston-type wavemaker, with the period from 2.5 to 8 seconds, and waveheight from 0.2m to 1m. Under these wave conditions, the floating body motion displacement is observed to calculate the power.
To verify the numerical simulation with experiment result, two different prototypes are tested, including circular cylinder-like and disk-like shape. The result indicates that motion of floating body relates to its weight and the period of incident wave. With the long incident wave period, the floating body is moved with the wave while the resonance is caused in the short periods. Based on our results, the resonance of the floating body with circular-like shape is more prominent than that with disk-like shape in short wave periods, Therefore, the circular-like shape floating body is used for further optimal design. With the same weight of floating body and incident wave condition, the shape of floating body is varied to determine the optimal design. It is found that the maximum amplitude of floating body is achieved as the submerged portion is cut into a half.
1.徐泊樺、顏志偉. “淺談我國海洋能源之開發前景”, 物理雙月刊, Vol.29,NO.3, 2007.
2.左然、施明恒, 可再生能源概論, 機械工業出版社, 2007.
3.Roger Henri Charlier, John R. Justus, “Ocean Energies: Environmental, Economic, and Technological Aspects of Alternative Power Sources”, Elsevier, 1993
4.戴仰山, 船舶波浪載荷, 國防工業出版社 , 2007.
5.Korvin-Kroukovsky, B. V. “Investigation of Ship Motion in Regular Waves”. Trans. SNAME, Vol. 63, 1955.
6.Korvin-Kroukovsky, B. V. and Jacobs, W. R., “Pitching and Heaving Motions of A Ship in Regular Waves”. Trans. SNAME, Vol. 65, 1957.
7.Ogilvie, T. F., and Tuck, E. O. “A Rational Strip Theory of Ship Motions”. Ann Arbor: Univ. Michigan, Dept. of Nav. Arch. Mar. Eng., 1969.
8.Tasai, F., and Takagi, M., “Theory and Calculation of Ship Response in Regular Waves”. Proc, Symp. On Seaworthiness of Ships, Japan Society of Navel Architects, Tokyo.1969.
9.Gerritsma, J., and Beukelman, W., “Analysis of the Modified Strip Theory for the Calculation of Ship Motions and Wave Bending Moments”. International Shipbuilding Progress,1967.
10.Salvensen, N., Tuck, E. O., and Faltinsen, O., “Ship Motions and Sea Loads.” Trans.SNAME, Vol. 78:250-287, 1970.
11.小林正典. 船舶適航性的理論計算程序.上海船研所譯, 1973.
12.Frank, W., “Oscillation of Cylinders in or below the Free Surface of Deep Fluids”, Report Number 2375, DTRC, Bethesda, Md. 1967.
13.Kim, C. H., Chou, F. S., and Tien, D., “Motion and Hydrodynamic Loads of a Ship Advancing in Oblique Waves”. Trans. SNAME, Vol.38, 1980.
14.Tasai, F., “Hydrodynamic Force and Moment Produced by Swaying and Rolling Oscillation of Cylinders on the Free Surface”. Reports of Research Institute for Applied Mechanics, Kyushu University Japan, Vol. 9. NO. 35, 1961.
15.Muir, Wood A. M., Coastal Hydraulics, London: Mac Millon, 1969.
16.許泰文, 近岸水動力學, 中國土木水利工程學會, p1-58, 2003.
17.郭禮安, 風鼓式海浪發電設備研發先期研究水工模型試驗報告 ,2005.