| 研究生: |
陳宜楣 Chen, Yi-Mei |
|---|---|
| 論文名稱: |
運用FMEA分析無塵室氣體分子汙染問題 Using FMEA to Analyze the Problems of Airborne Molecular Contamination in Clean Rooms |
| 指導教授: |
林清河
Lin, Chin-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 氣體分子汙染 、QC七大手法 、失效模式與效應分析 |
| 外文關鍵詞: | Airborne Molecular Contaminant (AMC), QC seven tools, Failure mode and effects analysis (FMEA) |
| 相關次數: | 點閱:130 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體在生產各段製程上皆使用化學品作業,過程中不能受到一點汙染,否則會造成晶圓上的缺陷(defect),影響良率。隨著製程演進、晶圓的線寬(Line-width)越來越小,汙染物影響製程機率越來越高,故汙染物的控制是未來半導體目標與挑戰。本研究主要以無塵室內氣體分子汙染(Airborne Molecular Contaminant, AMC)為研究主題,找出其影響良率不良之因素。
目前AMC與良率的相互影響性,單純確認關鍵設備與製程參數無法完整呈現其關聯性,有研究表示在製程中使用多種化學品的複雜製程不一定會在環境中產生高濃度AMC風險;晶片生產環境過程中高濃度AMC不一定會導致產品不良;相反地,材料及非生產過程問題也有可能會導致產品檢測失敗的機率。因此應把環境變數納入考量,而生產環境是即時性變化不容易發現,因此本研究利用失效模式與效應分析(Failure modes and effects analysis, FMEA)從過去案例找到關鍵失效原因,分析其解決方式。
失效模式與效應分析(Failure modes and effects analysis, FMEA),是一個有系統的分析方式用來找出潛在的「失效」因子,主要目標是預防「失效」的發生,能達到最小化失誤的機率。因此選擇此方法來探討發生原因,歸納出影響整體性之環境變數,提供相關領域人員參考。
本研究透過相關文獻與業界專家訪談,利用「特性要因法」找出過去所忽略的潛在失效模式,將失效模式分等級,並說明對製造程序的影響,接著由業界專家客觀評估各個失效因子嚴重度(S)、發生度(O)、偵測度(D)的等級評估,數據結果經過公式計算求得風險優先指數(Rish Priority Number, RPN),最後將得到的數據與專家討論出問題分析模式。
Semiconductors use chemicals in all stages of the production process. As the process evolves, and the line width of the wafer becomes increasingly smaller, the probability of pollutants affecting the process becomes accordingly higher.The present study was focused on airborne molecular contaminants (AMCs) in a clean room to determine the factors that affect the yield rate.
At present, the correlation between AMC and semiconductor yields cannot be fully defined simply based on key equipment and process parameters.Due to real-time changes in the production environment, it is not easy to immediately find the cause of such failures.
FMEA is a systematic analytical approach generally used to identify potential failure factors, with the main goal of preventing or minimizing failure occurrence. In this particular study, this approach was applied to explore the causes of failure occurrence and summarize the environmental variables affecting the overall situation.
Collecting information through expert interviews, a cause and effect analysis is conducted to identify potential failure modes that have been neglected in the past, rank the failure modes, and explain their impact on the manufacturing process. Then, industry experts objectively evaluate the risk level of each failure factor, including Severity (S), Occurrence (O), Detection, and (D) grade evaluations. The results of the data analysis are calculated using a formula to obtain the Risk Priority Number (RPN), and finally the obtained data are discussed with the experts to analyze the problem modes.
黃清賢(1996) 。危害分析與風險評估。臺北市:三民。
盧博堅、江旭程、陳俊成 & 劉嘉俊 (2001)。空氣品質與噪音防制。台北: 空大出版。
小野寺勝重(2001)。實踐 FMEA手法。臺北市:中衛發展中心。
王輔仁 (2004)。無塵室技術:設計、測試、運轉。台北:全華科技圖書股份有限公司。(譯自:Cleanroom Technollgy Fundamentals of Design, Testing and Operation, W.WHYTE (2001) )。
黃覃君 (2005)。「晶圓廠空氣中氣態分子污染物之採樣[Sampling and Analysis of AMC in Fab Air]」,科儀新知,26(5),1-7。
顏登通(2005)。高科技廠務。台北:全華科技圖書股份有限公司。
施敏 (2006)。半導體製程概論。新竹:交大出版社。
林清河 (2007)。 工作研究[Work Study]。台北市:華泰。
張勝祈 (2007) 。「某晶圓廠區域洗滌設備異常事件之風險評估」。國立交通大學工學院產業安全與防災學程碩士論文。
林文川 (2009)。「製程VOCs廢棄之收集與處理」。工業污染防治,第110期,105-173。
林錦椿、陳俊勳(2010)。以HACCP管控無塵室酸性氣態分子污染物之研究。工業安全衛生,(256),14-43。doi:10.6311/ISHM.201010_(256).0003
吳政鋼(2013)。「潔淨室的氣態微分子汙染物防治策略探討」。國立成功大學工學院工程管理碩士在職專班碩士論文,台南市。 取自https://hdl.handle.net/11296/9t2z89
黃士滔、鍾逸芬(2014)。「無塵室管理品質提升之個案探討」。商業現代化學刊,7(4),275-294。doi:10.6132/JCM.2014.7.4.13
洪僖黛、梁紹任 (2016)。「DEA 在失效風險評估模式之應用」。危機管理學刊, 13(1), 1-8。
朱品潔(2017)。以知識流觀點探討遠距照護之模糊失效模式(碩士論文)。取自華藝線上圖書館系統。(系統編號U0026-2606201711331300)
羅皓平(2018)。IATF 16949風險管理工具簡介-失效模式與效應分析。品質月刊,54(3),15-19。
Richard Yi-Hui Yu (2018)。”無塵室空氣濾網發展新趨勢”。SEMI「節能製造與微污染控制」產品及技術發表研討會,工業技術研究院。取自: http://www.htftaiwan.org/uploads/1/0/5/5/105578657/8
康育豪 (2018 )。”AMC微污染控制與化學濾網”。SEMI「節能製造與微污染控制」產品及技術發表研討會, 工業技術研究院。取自: http://www.htftaiwan.org/uploads/1/0/5/5/105578657/6
林松茂(2019)。AIAG & VDA FMEA 1^(st) Edition 2019新版簡介與應用。品質月刊,55(8),27-36。
林公孚(2019)。認識PCDA與FOCUS-PDCA。品質月刊,55(1),18-19。
吳萬益 (2019)。企業研究方法。台北市:華泰。
朱國志、張翼(2020)。高壓氫氣儲存區危險區域劃分及防爆電氣設備選用探討。工業安全衛生,(371),41-64。doi:10.6311/ISHM.202005_(371).0005
林立柏(2020)。光電廠預防保養作業人員金屬砷之暴露評估(碩士論文)。取自華藝線上圖書館系統。(系統編號U0003-2608202018361100)doi:10.6834/csmu202000259
溫怡貞、金大仁、陳俊瑜(2020)。協同作業機器人危害風險評估及改善對策之探討-以電子零組件製程為例。勞動及職業安全衛生研究季刊,28(1),60-68。
C. C. Chien, C. N. Chang, J. Shyu, E. Hsiao, B. S. Tang and Liang-Kun Zhu, "Innovative precise-environment design and technology of removing the pollutant from a clean room," 2013 e-Manufacturing & Design Collaboration Symposium (eMDC), Hsinchu, 2013, pp. 1-4, doi: 10.1109/eMDC.2013.6756037.
Chia-ching, Wan, Jang-Jung Lee, & Lien-fang Wu (2010, October). "Outdoor airborne contamination control for semiconductor manufacturing process."In 2010 International Symposium on Semiconductor Manufacturing (ISSM) (pp. 1-4). IEEE.
Ching-Fa, Yeh., Chih-Wen, Hsiao., Shiuan-Jeng, Lin., Chih-Min, Hsieh., Kusumi, T., Aomi, H., . . . Ming-Shih, T. (2004)."The removal of airborne molecular contamination in cleanroom using PTFE and chemical filters." IEEE Transactions on Semiconductor Manufacturing, 17(2), 214-220. doi: 10.1109/TSM.2004.826957
J. Jeong, J. Park, E. Han, J. Kim and H. Kim, "Control of Wafer Slot-Dependent Outgassing Defects during Semiconductor Manufacture Processes," 2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 2019, pp. 1-4, doi: 10.1109/ASMC.2019.8791794.
K. C. Noh , M. D. Oh, &S. C.Lee (2005). “A numerical study on airflow and dynamic cross-contamination in the super cleanroom for photolithography process.” Building and Environment, 40(11), 1431-1440.
M. Otto (2015, February). "Airborne molecular contamination: quality criterion for laser and optical components." In Components and Packaging for Laser Systems (Vol. 9346, p. 93460F). International Society for Optics and Photonics.
M. Regester,(1995)。危機管理[Crisis Management](陈向阳 & 陈宁譯))。 上海市:复旦大学出版社。
R. S. Jian, T. Y. Wang, L. Y. Song, C. Y. Kuo, W. C. Tian, E. W. Lo, & C. J. Lu (2015). “Field investigations and dynamic measurements of process activity induced VOCs inside a semiconductor cleanroom.“, Building and Environment, 94, 287-295.
Sabrine Tlili, Elen Gómez Alvarez, Sasho Gligorovski,Henri Wortham (2012). “Adsorption behavior of two model airborne organic contaminants on wafer surfaces.” Chemical engineering journal, 187, 239-247.
Sara Case, Stephanie Waite, John Barke, Wei Zhao, Jong Soo Kim, Joshua Moore, Eswar Ramanathan (2016, May). “Impact of FOUP environment on product yield in advanced technologies.”, In 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) (pp. 168-171). IEEE.
S. C. Hu, A. Shiue, & Y. T. Yang (2015, September). "450mm FOUP/LPU system in advanced semiconductor manufacturing processes: A study on the minimization of oxygen content inside FOUP when the door is opened.", In 2015 Joint e-Manufacturing and Design Collaboration Symposium (eMDC) & 2015 International Symposium on Semiconductor Manufacturing (ISSM) (pp. 1-4). IEEE.
Taketoshi Fujimoto, Kikuo Takeda, & Tatsuo Nonaka. (2008). “Airborne molecular contamination: contamination on substrates and the environment in semiconductors and other industries.”, In Developments in Surface Contamination and Cleaning (pp. 329-474). William Andrew Publishing.
W. Den, S. C. Hu, C. M. Garza, & O. A. Zargar (2020).”Airborne Molecular Contamination: Recent Developments in the Understanding and Minimization for Advanced Semiconductor Device Manufacturing.” ECS Journal of Solid State Science and Technology, 9(6), 064003.
Zhou, G., Niu, L., Jiang, Y., Liu, H., Xie, X., Yan, H., ... & Zhou, H. (2019). “Sensing of airborne molecular contaminants based on microfiber coupler with mesoporous silica coating.” Sensors and Actuators A: Physical, 287, 1-7.
校內:2033-01-01公開