簡易檢索 / 詳目顯示

研究生: 陳慧芝
Apisitpuwakul, Pacharawon
論文名稱: 泰國典型獨棟透天住宅之自然通風性能
Natural Ventilation Performance of a Residential Single House in Thailand
指導教授: 賴啟銘
Lai, Chi-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 85
外文關鍵詞: Natural ventilation, Computational Fluid Dynamics (CFD), Residential building, Hot-humid climate, Thermal comfort
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis presents the study of natural ventilation performance for planning
    design of single residential house in Bangkok. Method includes simulation by computational fluid dynamics program (CFD) on 4 different cases: 1) daytime without wind, 2) daytime with 3m/s wind velocity, 3) daytime with 3m/s wind velocity (closed transom windows) and 4) nighttime with 3m/s wind velocity. The CFD model validation done by compared the values with the obtained data from the wind tunnel experiments. However, some discrepancies are present near the floor and ceiling areas due to the material, a good agreement between experiment and CFD results was found.
    It is discovered that outdoor wind velocity did not have considerable effect on the
    indoor air quality factor but significant effect on the level of comfort. However, the finding highlighted that better performance could be observed near the opening. It is also found that PMV and PPD values slightly higher that the suggested acceptability in ASHARE standards.

    ACKNOWLECGEMENTS .......................................................................................... I ABSTRACT ............................................................................................................. II CONTENTS ............................................................................................................ III LIST OF TABLES ..................................................................................................... V LIST OF FIGURES .................................................................................................. VI LIST OF EQUATIONS .............................................................................................. X NOMENCLATURE .................................................................................................. XI CHAPTER I INTRODUCTION ................................................................................... 1 1.1 Introduction ....................................................................................................... 1 1.2 Objectives ........................................................................................................ 2 1.3 Scopes of study ................................................................................................ 3 CHAPTER II LITERATURE REVIEW .......................................................................... 4 2.1 Thailand’s climate conditions ........................................................................... 4 2.1.1 Temperature ................................................................................................... 4 2.1.1 Wind ............................................................................................................... 6 2.2 Thermal comfort .............................................................................................. 7 2.3 Natural ventilation principles .......................................................................... 10 2.3.1 Wind-driven ventilation ................................................................................. 11 2.3.2 Buoyancy-driven ventilation ......................................................................... 11 2.4 Wind tunnel ..................................................................................................... 11 2.5 Computational Fluid Dynamics (CFD) ............................................................. 13 2.5.1 PHOENICS .................................................................................................... 14 2.6 A case study house ........................................................................................ 16 CHAPTER III METHODOLOGY ............................................................................... 21 3.1 Data validation ................................................................................................ 22 3.1.1 Wind tunnel experiments .............................................................................. 22 3.1.2 CFD simulations ........................................................................................... 31 3.2 Full-scale CFD simulations ............................................................................. 33 3.2.1 Boundary condition ..................................................................................... 34 3.2.2 Control strategy .......................................................................................... 37 CHAPTER IV RESULTS AND DISCUSSIONS .......................................................... 39 4.1 Validation analysis .......................................................................................... 39 4.2 The effect of control strategy on ventilation performance ............................. 40 CHAPTER V CONCLUSIONS ................................................................................ 69 5.1 Conclusions .................................................................................................... 69 5.2 Suggestions for the future work ..................................................................... 70 REFENCES ............................................................................................................ 71 APPENDIX ............................................................................................................ 76

    Aflaki, A., Mahyuddin, N., Mahmoud, Z. A. C., & Baharum, M. R. (2015). A review on
    natural ventilation applications through building façade components and ventilation openings in tropical climates. Energy and buildings, 101, 153-162.
    ASHRAE Standard 55. (1992). Thermal Environmental conditions for human occupancy, Atlanta.
    Awbi, H. B., & Gan, G. (1994). Predicting air flow and thermal comfort in offices.
    ASHRAE Journal-American Society of Heating Refrigerating and Airconditioning
    Engineers, 36(2), 17-23.
    Bird, J. O., Chivers, P. J. (1993) Newnes Engineering and Physical Science Pocket Book, (pp. 370-381).
    Daghigh, R. (2015). Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions. Renewable and sustainable energy reviews, 48, 681-691.
    Electricity Generating Authority of Thailand, EGAT. (2018). Annual report. Retrieved
    from http://www.egat.co.th.
    Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental
    engineering. Thermal comfort. Analysis and applications in environmental
    engineering.
    Givoni, B. (1992). Comfort, climate analysis and building design guidelines. Energy and buildings, 18(1), 11-23.
    Givoni, B. (1998). Climate considerations in building and urban design. John Wiley & Sons.
    Goodfellow, H. D. (2001). Industrial ventilation design guidebook. Elsevier.
    Grosso, M. (1991). Wind pressure distribution around buildings: a parametrical model. Energy and Buildings, 18(2), 101-131.
    Haase, M., & Amato, A. (2009). An investigation of the potential for natural ventilation and building orientation to achieve thermal comfort in warm and humid climates. Solar energy, 83(3), 389-399.
    Henning, H. M. (2007). Solar assisted air conditioning of buildings–an overview. Applied thermal engineering, 27(10), 1734-1749.
    Hoof, J. V. (2008). Forty Years of Fanger’s Model of Thermal Comfort: Comfort for All, Indoor Air, 18(3).
    Isaac, M., & Van Vuuren, D. P. (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy policy, 37(2), 507-521.
    Boonnak, W., & Charoenviriyakul, C. (2018). The demand of new generations to purchase their future living spaces. The journal of department administration research, 8(2), 43-49.
    Busch, J. F. (1992). A tale of two populations: thermal comfort in air-conditioned and naturally ventilated offices in Thailand. Energy and buildings, 18(3-4), 235-249.
    Chen, Q. (2009). Ventilation performance prediction for buildings: A method overview and recent applications. Building and environment, 44(4), 848-858.
    Chen, Q., Lee, K., Mazumdar, S., Poussou, S., Wang, L., Wang, M., & Zhang, Z. (2010). Ventilation performance prediction for buildings: model assessment. Building and Environment, 45(2), 295-303.
    Cheung, J. O., & Liu, C. H. (2011). CFD simulations of natural ventilation behaviour in high-rise buildings in regular and staggered arrangements at various spacings. Energy and Buildings, 43(5), 1149-1158.
    ISO Standard 7730. (1994). Moderate thermal environments - determination of the PMV and PPD indices and specification of the conditions for thermal comfort. ISO,
    Geneva.
    Jiang, Y., & Chen, Q. (2003). Buoyancy-driven single-sided natural ventilation in buildings with large openings. International Journal of Heat and Mass Transfer, 46(6), 973-988.
    Jones, P. J., & Whittle, G. E. (1992). Computational fluid dynamics for building air flow prediction—current status and capabilities. Building and Environment, 27(3), 321-338.
    Kang, K. N., Yu, J., Song, D. S., Ham, H. J., Seo, K. J., & Yun, I. C. (2007, June). Analysis of natural wind characteristics and review of their correlations with human thermal sense through actual measurements. In Proceedings of the International Conference on Sustainable Building Asia.
    Karava, P., Stathopoulos, T., & Athienitis, A. K. (2011). Airflow assessment in crossventilated buildings with operable façade elements. Building and Environment, 46(1), 266-279.
    Li, R., Pitts, A., & Li, Y. (2007). Buoyancy-driven natural ventilation of a room with large openings. In The proceedings of building simulation 2007, 10th conference of the international-building-performance-simulation-association Tsinghua University, Beijing (pp. 984-991).
    Lundgren, K., & Kjellstrom, T. (2013). Sustainability challenges from climate change and air conditioning use in urban areas. Sustainability, 5(7), 3116-3128.
    Meiss, A., Padilla-Marcos, M., & Feijó-Muñoz, J. (2017). Methodology applied to the evaluation of natural ventilation in residential building retrofits: A case study.
    Energies, 10(4), 456.
    Meroney, R. N. (2009, June). CFD prediction of airflow in buildings for natural ventilation. In Proceedings of the Eleventh Americas Conference on Wind Engineering, Puerto Rico.
    Mohammadi, M., & Calautit, J. K. (2019). Numerical Investigation of the Wind and
    Thermal Conditions in Sky Gardens in High-Rise Buildings. Energies, 12(7), 1380.
    Montazeri, H. (2011). Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers. Building and Environment, 46(2), 370-378.
    NASA Earth Observatory. (2010, June 3). Fact Sheet: Global Warming. Retrieved from https://earthobservatory.nasa.gov.
    Nejat, P., Jomehzadeh, F., Hussen, H., Calautit, J., & Abd Majid, M. (2018). Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls. Energies, 11(10), 2536.
    Nielsen, P. V. (2015). Fifty years of CFD for room air distribution. Building and
    Environment, 91, 78-90.
    Oropeza-Perez, I., & Østergaard, P. A. (2014). Potential of natural ventilation in temperate countries–a case study of Denmark. Applied energy, 114, 520-530.
    Hassan, A. S., & Ramli, M. (2010). Natural ventilation of indoor air temperature: A case study of the traditional Malay house in Penang. Am. J. Engg. & Applied Sci, 3(3), 521-528.
    Parkpoom, S., & Harrison, G. P. (2008). Analyzing the impact of climate change on future electricity demand in Thailand. IEEE Transactions on Power Systems, 23(3), 1441-1448.
    Prajongsan, P., & Sharples, S. (2012). Enhancing natural ventilation, thermal comfort and energy savings in high-rise residential buildings in Bangkok through the use of ventilation shafts. Building and Environment, 50, 104-113.
    Rattanongphisat, W., & Rordprapat, W. (2014). Strategy for energy efficient buildings in tropical climate. Energy Procedia, 52, 10-17.
    Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2014). On The Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity
    Consumption of Buildings - A Review. Energy and Buildings, doi:10.1016/j.enbuild.2014.09.052.
    Thai Meteorological Department, TMD. (2018). Climatological data. Retrieved from
    http://climate.tmd.go.th.
    The Bangkok Metropolitan Administration, BMA. (2016). Energy efficient house designs. Retrieved from http://www.bangkok.go.th.
    The PHOENICS On-Line Information System, POLIS. (2019, April 14). PHOENICS-VR Reference Guide. Retrieved from http://www.cham.co.uk.
    Wong, N. H., & Huang, B. (2004). Comparative study of the indoor air quality of naturally ventilated and air-conditioned bedrooms of residential buildings in Singapore.Building and Environment, 39(9), 1115-1123.
    World Health Organisation. (1946). Preamble to the Constitution of the World Health Organisation as adopted by the International Health Conference, New York.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE