簡易檢索 / 詳目顯示

研究生: 梁沛基
Leong, Pui-Kei
論文名稱: 數位三角積分脈波寬度調變控制之1MHz直流-直流切換式電源轉換器設計
Design of Sigma-Delta DPWM Controller for 1MHz DC-DC Switch-Mode Power Supplies
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 107
中文關鍵詞: 數位三角-積分調變器直流-直流切換式電源轉換器數位脈波寬度調變器
外文關鍵詞: switch-mode power supplies, DC-DC converter, sigma-delta DPWM
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著數位控制器於直流-直流切換式電源轉換器能帶來很多顯著的好處,本論文將提出一個數位三角-積分脈波寬度調變控制之1MHz直流-直流切換式電源轉換器設計,從而達到快速暫態響應以及低功率消耗的優點。
    利用二階多位元數位三角-積分調變器,本論文之控制器只需要一個低功耗、低解析度的數位寬度調變器。因為三角-積分調變可大大提升數位寬度調變器之等效解析度。另外,使用查表法之數位比例積分微分(PID)補償器取代傳統的乘法器架構以節省晶片實現面積。同時,經修正之線性類比至數位轉換器(ADC)能有效降低系統對切換雜訊的影響。最後,本論文將比較Matlab/Simulink模擬結果與FPGA實驗結果來證明系統設計的正確性。

    Based on digital controllers offering significant advantages in Switch-Mode Power Supplies (SMPS), the aim of this work is to develop a sigma-delta DPWM controller for 1MHz DC-DC SMPS to achieve both fast transient response and low power consumption.
    Utilizing a multi-bit digital second order sigma-delta modulator, the proposed controller is only required a low-power low-resolution DPWM since the total effective DPWM resolution is improved by the sigma-delta modulation to avoid limit cycle oscillations (LCOs). In addition, the conventional multiplier based digital PID compensator is replaced by the look-up table based architecture to decrease the area consumption, while the modified linear ADC reduces the influence of switching noise on operation of SMPS. Finally, the Matlab/Simulink simulation and FPGA experimental results are compared to verify the validity of the proposed work.

    Chapter 1 Introduction 1 1.1 Previous Art and Research Motivation 1 1.2 The Challenge of High-Frequency Digital-Control SMPS 3 1.3 Research Goals and Contributions 4 1.4 Thesis Organization 5 Chapter 2 Fundamental of Digitally Controlled DC-DC SMPS 7 2.1 Basic principles of SMPS Buck Converter operation 7 2.1.1 PWM operation 11 2.1.2 Output Filter Design 12 2.1.3 Source of Dissipation 14 2.2 General Digital Controller Architecture 19 2.3 Analog-to-Digital Converter Design Requirement 20 2.3.1 Noise and Temperature Performance 23 2.3.2 Delay-Line Analog-to-Digital Converter for SMPS applications 24 2.4 Digital PID compensator 28 2.4.1 Multiplier based Digital PID Compensator 29 2.4.2 Loop-Up Table Based Digital PID Compensator 30 2.5 Digital Pulse-Width Modulator 31 2.5.1 Resolution Requirement for DPWM 32 2.5.2 Counter-based DPWM 34 2.5.3 Delay-Line based DPWM 35 2.5.4 Hybrid Counter-Delay Line DPWM 36 2.6 Modeling of Uncompensated System Plant, ADC, and DPWM 37 2.7 Sigma-Delta DPWM Controller for a purposed DC-DC SMPS 42 2.7.1 Digital Sigma-Delta PWM Controller for SMPS 42 2.7.2 Low Power ΣΔ DPWM 45 2.8 Summary 47 Chapter 3 High-Frequency ΣΔ DPWM 48 3.1 Digital Pulse-Width Modulators Based on the Noise-Shaping Concept 48 3.2 1st Order ΣΔ Noise Shaping DPWM 50 3.3 Output Voltage Tones generated by the 1st Order ΣΔ modulator 54 3.4 Attenuation of Low-Frequency Tones and Fast Convergence by the 2nd Order ΣΔ modulator 59 3.5 Dynamic Model for 2nd Order ΣΔ DPWM 66 3.6 Effective ΣΔ DPWM Resolution 67 3.7 Circuit Implementation 68 3.8 Summary 70 Chapter 4 ADC Encoder and Compensator 71 4.1 Analog to Digital Encoder 71 4.2 Loop-Up Table Based Digital PID compensator 72 4.2.1 Design of Digital PID compensator 73 4.2.2 Implementation of Loop-Up Table Based Digital PID compensator 77 4.3 Summary 79 Chapter 5 Simulation Results 80 5.1 The Simulation Models 80 5.2 Open-Loop System Verification for DPWM Resolution and Linearity Test 80 5.3 Close-Loop System Verification for DC-DC SMPS 82 5.4 Summary 86 Chapter 6 FPGA Experimental Results 87 6.1 FPGA Experimental Hardware Setup 87 6.2 DPWM Resolution and Linearity Test Results 88 6.3 Digital Controller Closed Loop Response 91 6.3.1 Steady-State Response 92 6.3.2 Load Transient Response 94 6.4 Summary 97 Chapter 7 Conclusions and Future Work 98 7.1 Future Work 98 Reference 100 Appendix 104

    [1] D. Sprock and P. Hsu, “Predictive discrete time control of switch-mode applications,” IEEE PESC, 1997, pp. 175-1 81.
    [2] F. H. F. Leung and P. K. S. Tam, “An adaptive digital controller for switching dc-dc converters,” in Proc. 1991 Int. Conf. Ind. Electron., Contr. & Instrumentation, (IECON ‘91), Kobe, vol. 1, Oct. 1991, pp. 507-512.
    [3] S. Bibian, H. Jin, “High performance predictive dead-beat digital controller for dc power supplies,” Power Electronics, IEEE Transactions on, May 2002 Page(s):420-427.
    [4] Z. Lukić, N. Rahman, and A. Prodić, “Multi-Bit Sigma-Delta PWM Digital Controller IC for DC-DC Converters Operating at Switching Frequencies Beyond 10 MHz,” IEEE Transactions on Power Electronics, September 2007, Vol.22, Issue 5, pp. 1693-1707.
    [5] Z. Zhao, A. Prodić, “Limit-Cycle Oscillations Based Auto-Tuning System for Digitally Controlled DC-DC Power Supplies,” IEEE Transactions on Power Electronics, November 2007, Vol.24, Issue 6, pp. 2211-2222.
    [6] Data Sheet, TPS 62300, 500mA, 3-MHz, Step-Down Converter, Texas Instruments.
    [7] Data Sheer. MAX 85600, 500mA, 4 MHz, Step-Down DC-DC Converter, Maxim.
    [8] B. Patella, A. Prodic, A. Zirger, D. Maksimovic, “High-Frequency digital PWM controller IC for DC-DC converters,” IEEE Transactions on Power Electronics, Special Issue on Digital Control, vol. 18. pp. 438-446, January 2003.
    [9] H. Peng. A. Prodic E. Alarcon and D. Maksimovic, “Modeling of Quantization Effects in Digitally Controlled DC–DC Converters,” IEEE Trans. On Power Electronics, Vol. 22, pp. 208 – 215, 2007.
    [10] A. Kelly, K. Rinne, “High Resolution DPWM in a DC-DC Converter Application Using Digital Sigma-Delta Techniques,” in Proc. IEEE PESC'05 Conf., pp. 1458-1463, 2005.
    [11] R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed., Kluwer Academic, Inc., 2001.
    [12] David Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, 1997.
    [13] A. Prodic, D. Maksimovic, and R. Ericson, “Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converters,” in Proc. IEEE IECON Conf., 2002, pp. 331-362.
    [14] Application Notes, Understanding Flash ADCs Maxim 2001.
    [15] Neil H. E. Weste and David Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 3rd Ed., Addison Wesley, 2005.
    [16] M. Maymandi-Nejad and M. Sachdev, “A digitally programmable delay element: Design and analysis,” IEEE Trans. Very Large Scale (VLSI) Syst., vol. 11, pp. 871–878, Oct. 2003.
    [17] M. Vincent and D. Maksimovic, “Matched Delay Line Voltage Converter,” U.S. Patent 6958721, Oct. 2005.
    [18] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th Ed. New York: Oxford Univ. Press, 2004.
    [19] Charles L. Phillips and H. Troy Nagle, Digital Control System Analysis and Design, Third Ed., Prentice-Hall, 1992.
    [20] A. Prodic, D. Maksimovic, “Design of Digital PID Regulator Based on Look-Up Table for Control of High-Frequency DC-DC Converters,” Computer in Power Electronics, pp. 18-22, June 2002.
    [21] C. Richard Dorf, H. Robert Bishop, Modern Control Systems, 11th edition, Prentice Hall, 2008.
    [22] A. Syed, E. Ahmed, D. Maksirnovic, and E. Alarcon. “Digital Pulse Width Modulator Architectures,” in Proc. IEEE PESC’04 Conf, pp. 4689-4695, 2004.
    [23] A. V. Peterchev, S. R. Sanders, “Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters,” IEEE Transactions on Power Electronics, Special Issue on Digital Control, vol.18, pp.301-308, January 2003.
    [24] G. Y. Wei, M. Horowitz, “A low power switching power supply for Self-Clocked Systems,” International Symposium on Low Power Electronics and Design, pp.313–317, Aug., 1996.
    [25] V. Yousefzadeh, T. Takayama, D. Maksimovic, “Hybrid DPWM with Digital Delay-Locked Loop,” Proc. IEEE Computers in Power Electronics Workshop (COMPEL), July 2006.
    [26] Ka Nang Leung, Philip K. T. Mok, “A Sub-1-V 15-ppm/。C CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device”,JSSC, vol.37, no.4, April 2002.
    [27] G. Kennedy and K. Rinne, “A programmable bandgap voltage reference CMOS ASIC for switching power converter integrated digital controllers,” in Proc.IEEE PESC Conf., pp. 523–529, Jun. 2005.
    [28] M. Hafed, S. Laberge and G. W. Roberts, “A Robust Deep Submicron Programmable DC Voltage Generator,” Proceedings of the IEEE International Symposium on Circuits and Systems, Genva, Switzerland, vol. IV, pp. 5-8, May 2000.
    [29] S. Laberge, G.W. Roberts, “Temperature Compensated CMOS Voltage Reference,” in Proc. IEEE Symposium in Circuits and Systems, vol. 1, pp. 717-720, May 2002.
    [30] J. Xiao, A. Peterchev, J. Zhang, and S. R. Sanders, “An ultra low-power digitally-controlled buck converter IC for cellular phone applications,” in Proc. IEEE APEC Conf., 2004, pp. 383-391.
    [31] A. Syed, E. Ahmed, D. Maksimovic, “Digital PWM controller with feed-forward compensation,” in Proc. IEEE Appl. Power Electron. Conf., 2004, pp.60-66.
    [32] R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, IEEE Press, John Wiley & Sons, Inc., 2005.
    [33] A. Parayandeh, A. Prodic, “Programmable Analog-to-Digital Converter for Low-Power DC-DC SMPS,” Power Electron, IEEE Transactions on vol. 23, pp. 500-505, Jan. 2008.
    [34] Z. Lu, Z. Qian, Y. Zeng, W. Yao, G. Chen, Y. Wang, “Reduction of Digital PWM Limit Ring with Novel Control Algorithm,” Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, Volume 1, pp. 521-525, March 2001.
    [35] R. M. Gray, “Quantization Noise Spectra,” IEEE Trans. on Information Theory, vol. 36, no. 6, pp.1120-1144, November 1990.
    [36] Gray, R. M., “Spectral analysis of quantization noise in a single-loop sigma-delta modulator with dc Input,” IEEE Trans. on Communications, vol. 37, no. 6, pp. 588-599, November, June. 1989.
    [37] W. Chou and R. M. Gray, “Dithering and its Effects on Sigma-Delta and Multistage Sigma-Delta Modulation,” IEEE Trans. on Information Theory, vol. 37, no. 3, pp. 500-513, May1991.
    [38] A.V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd Ed., Prentice-Hall, 1999.
    [39] J. H. Taylor, “Describing functions,” in Electrical and Electronics Engineering Encyclopedia. New York: Wiley, 2000, pp. 77–98.
    [40] A. Gelb and W. E. Vander Velde, Multiple-Input Describing Functions and Nonlinear System Design. New York: McGraw-Hill, 1968.
    [41] B. Dufort and G. W. Roberts, “Signal Generation Using Periodic Single and Multi-Bit Sigma-Delta Modulator Streams,” in Proc. IEEE International Test Conference, pp.396-405, 1997.
    [42] N. Rahman, A. Parayandeh, K. Wang, and A.Prodić, “Multimode digital SMPS controller IC for low-power management,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), 2006, June 2006, Kos, Greece, pp.35-40.
    [43] T. Takayama and D. Maksimovic, “A power stage optimization method for monolithic DC-DC converters,” in Proc. IEEE PESC’06, pp. 1-7, 2006.
    [44] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technologies, ”IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
    [45] TI Application Report, “Predictive Gate Drive Boosts Synchronous DC/DC Power Converter Effiency,” Apr. 2003.
    [46] Datasheet, AD7822, Analog Devices, Inc (2006).
    [47] Datasheet, Si4724CY, Vishay Siliconix, Inc (2005).
    [48] Datasheet, EP2C20F484C8: IC CYCLONE II FPGA 20K 484-FBGA, Altera, 2004.
    [49] Datasheet, Chip Inductors -0603LS Series, Coilcraft Inc.
    [50] Datasheet, TDK 0805 Ceramic Chip Capacitor 16V 1μF 10%, TDK Inc.
    [51] A. Prodic, D. Maksimovic, “Mixed-signal simulation of digitally controlled switching converters,” in Proc. IEEE Computers in Power Electronics, pp. 100-105, 2002.
    [52] Hung-Yuan Chu; Chun-Hung Yang; Chi-Wai Leng; Chien-Hung Tsai, “A Top-down, Mixed-level Design Methodology for CT BP ΔΣ Modulator Using Verilog-A,” Communications, Circuits and Systems, 2008.
    [53] C. W. Leng, C. H. Yang and C. H. Tsai, “An integrated GUI tool for Digitally Controlled Switching DC-DC Converter,” in Proc. IEEE Communications, Circuits and Systems International Conferenc, pp:1324 – 1327, 2008.
    [54] M. Norris, L. M. Platon, E. Alarcon, D. Maksimovic, “Quantization noise shaping in digital PWM converters,” in Proc. IEEE PESC, June 2008.

    無法下載圖示 校內:2029-01-16公開
    校外:2029-01-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE