| 研究生: |
陸珺華 Lu, Chun-Hua |
|---|---|
| 論文名稱: |
粒子影像測速法於複合流體行為之探討 Investigation on the complex fluids by Digital Particle Image Velocimetry |
| 指導教授: |
戴義欽
Tai, Yih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 粒子影像測速法 、顆粒流 、PIVlab 、速度場分析 |
| 外文關鍵詞: | Particle Image Velocimetry, granular flow, PIVlab, Velocity field analysis |
| 相關次數: | 點閱:98 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣因地理位置、氣候、降雨等因素,自然災害發生的頻率較高,如山崩、土石流等這些快速移動的質量體,基本上皆可歸類於顆粒流的運動,為了解顆粒流的運動行為及機制,速度場的量測扮演重要關鍵性的角色。由於這些觀測的流體是顆粒體亦是複合流體,並非單一物質所構成,是顆粒和空氣或顆粒和液體的混合體,加上速度場變化非常劇烈,而且有部份是沒有速度場,造成粒子影像測速法(Particle Image Velocimetry,PIV )運用上的困難。隨著數位化的影響,從過去使用膠片拍攝到現今以數位的方式進行拍攝和影像的存取,亦把PIV以Digital Particle Image Velocimetry(DPIV)來稱呼。本研究目的就是針對這樣的問題找出最佳的解決方案,因此採用PIVlab進行速度場分析,來彌補PIV不足之處,並透過乾顆粒實驗、水中滑塊實驗、水砂混合實驗來呈現改善後的結果。於三種不同實驗分別驗證整合後的成果,分別是顆粒崩塌剖面速度趨勢類似線性,邊界mask影響範圍為2~4 mm;水中滑塊實驗的散射等問題大多可以克服及改善;水砂混合實驗於穩態的狀況下,可以多張照片平均彌補少數速度場缺失的情形,提高速度場的準確度。並從三個實驗結果提供實驗拍攝張數設定和影像顆粒對應之關係,提高速度場分析結果的準確度。
Due to the specific location and geological conditions, Taiwan is suffering from the high frequency of natural disasters, such as earthquakes, heavy rainfalls and the induced landslides, debris flow, etc. These destructive flows can be roughly classified as granular flow movement, although they are generally composed of grains of different size and the interstitial void is sometimes filled with water. From the viewpoint of disaster mitigation and risk management, it is of significant importance to investigate the dynamics of these flows, where the velocity measurement of the moving mass plays a crucial role. Because of the complexity of the fluid composition, it is dramatic to measure the velocity fields, not only of the fluid but also of the particle/sediment. It thus enhances the difficulty of velocity analysis by particle image velocimetry (Particle Image Velocimetry, PIV). The present study aims at the optimal solutions of velocity measurement, for which an open-source software, PIVlab, was chosen to analyze the high-speed camera captured images. Three experiments were performed to illustrate the achievements. They are a) dry granular collapsed experiment; b) the block sliding into water experiment; and c) water mixing sand experiments. The results also provide the indications for relationships between the number of shots and images particles, to improve the accuracy as well as the efficiency by velocity analysis in experiments.
[1] Adrian R. J., (1991). “Particle-Imaging Techniques for Experimental Fluid mechanics.” Annual Review of Fluid Mechanics, 23(1), 261–304.
[2] Adrian, R. J., (2005). “Twenty years of particle image velocimetry.” Experiments in Fluids, 39, 159–169.
[3] Adrian,R. J., (1984). “Scattering particle characteristics and their effect on pulsed laser easurements of fluid flow: speckle velocimetry vs particle image velocimetry.” Applied optics, 23, 1690-1691.
[4] Grant, I., (1997). “Particle Image Velocimetry: A Review,” Proceedings of the Institution of Mechanical Engineers, 211, 55–76.
[5] Guezennec, Y. G., Kiritsis, N., (1990). “Statistical investigation of errors in particle image velocimetry,” Experiments in Fluids, 146, 138–146.
[6] Huang H., Dabiri, D., and Gharib, M., (1999). “On errors of digital particle image velocimetry.” Measurement Science and Technology, 8, 1427–1440.
[7] Keane, D. and Adrian, R. J., (1990). “Optimization of particle image velocimeters. Part I : Double pulsed systems,” Measurement Science and Technology. 1,1202-1215.
[8] Keane, D. and Adrian, R. J., (1992). “Theory of cross-correlation analysis of PIV images.” Applied Scientific Research, 49,191-215.
[9] Lajeunesse, E., Mangeney-Castelnau, A., and Vilotte, J. P., (2004). “Spreading of a granular mass on a horizontal plane.” Physics of Fluids, 16, 2371–2381.
[10] Lube, G., Huppert, H. E., Sparks, R. S. J., and Hallworth, M. A., (2004). “Axisymmetric collapses of granular columns,” Journal of fluid mechanics, 508, 175–199.
[11] Lueptow, R. M., Akonur, A., and Shinbrot, T., (2000). “PIV for granular flows.” Experiments in Fluids, 28, 183-186.
[12] Melling, A., (1997) “Tracer particles and seeding for particle image velocimetry.” Meas. Sci. Technol.,8, 1406–1416.
[13] Meinhart, D., Wereley, S. T. and Santiago, J. G., (1999) “PIV measurements of a microchannel flow.” Experiments in Fluids, 27, 414–419.
[14] Nogueira, J., Lecuona, A., and Rodriguez, P. A., (1997). “Data validation, false vectors correction and derived magnitudes calculation on PIV data.” Measurement Science and Technology, 8, 1493–1501.
[15] Nogueira, J., Lecuona, A., and Rodriguez, P. A., (1997). “Data validation, false vectors correction and derived magnitudes calculation on PIV data.” Measurement science & technology, 8, 1493–1501.
[16] Raffel, M., Willert, C., Wereley, S. and Kompenhans, J., (2007), “Particle Image Velocimetry.” 2nd Edition, Berlin Heidelberg : Springer-Verlag.
[17] Roche, O., Attali , M., Mangeney, A. , and Lucas, A., (2011), “On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments.” Earth and Planetary Science Letters, 311, 375–385.
[18] Shavit, U., Lowe, R. J., andSteinbuck, J. V., (2007). “Intensity Capping: A simple method to improve cross-correlation PIV results,” Experiments in fluids, 42, 225–240.
[19] Sielamowicz, I., Błoñski, S., and Kowalewski, T. A., (2006). “Digital particle image velocimetry ( DPIV ) technique in measurements of granular material flows , Part 2 of 3-converging hoppers.” Chemical Engineering Science, 61 5307–5317.
[20] Stamhuis, E. and Videler, J., (1995). “Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry.” The Journal of Experimental Biology, 198, 283–294.
[21] Steingart, D. A. and Evans, J. W., (2005). “Measurements of granular flows in two-dimensional hoppers by particle image velocimetry. Part I : experimental method and results.” Chemical Engineering Science, 60, 1043–1051.
[22] Thielicke, W. (2014). “The Flapping Flight of Birds.”University of Groningen, PhD thesis.
[23] Thielicke, W. and Stamhuis, E. J., (2014). “PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB,” Journal of open research software, 30, 2-30.
[24] Takahama, J., Fujita, Y., Konda, Y. and Hachiya, K., (2002). “A two layer simulation model unifying debris flow and sediment sheet flow,” INTERPRAEVENT 2002 in the Pacific Rim, 1, 113-124.
[25] Westerweel, J., (2000). “Theoretical analysis of the measurement precision in particle image velocimetry,” Experiments in Fluids [Suppl], s3-s12.
[26] Willert, C. E. and Gharib, M., (1991). “Experiments in Fluids Digital particle image velocimetry,” Experiments in Fluids, 10, 181-193.
[27] Willert, E. and Gharib, M., (1991). “Digital particle image velocimetry.” Experiments in Fluids, 10, 181-193.
[28] 林美雪(2004),「台灣地區近三十年自然災害的時空特性」,師大地理研究報告,第41期,99-128。
[29] 李建誌(2007),「影像方法於量測顆粒流速度場之應用」,國立暨南大學土木工程學系碩士論文。