| 研究生: |
范保國 Quoc, Pham Bao |
|---|---|
| 論文名稱: |
應用WEAP模式評估氣候變遷對水文歷程與水資源之衝擊:以越南福隆集水區為例 Assessment of Climate Change Impacts on Hydrological Processes and Water Resources by WEAP Model: Case Study in Phuoc Long Catchment, Vietnam |
| 指導教授: |
游保杉
Yu, Pao-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 外文關鍵詞: | WEAP model, climate change, streamflow, water shortage |
| 相關次數: | 點閱:63 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Climate change could affect the water resources system globally in common and particularly at the catchment level. Future changes in climate would affect streamflow and subsequent water resources. This study aims to use the Water Evaluation and Planning (WEAP) model for assessment of climate change impacts on hydrological processes and water resources in Phuoc Long catchment, which plays a vital role in the life of inhabitants at the downstream of the Thac Mo reservoir. WEAP is a powerful tool in scenario building for predicting climate change impacts, which has been implemented in many catchments around the world. For this study, data collection and processes are conducted to input the required data into the WEAP model. Streamflow data (1978–1993) were used to calibrate and validate the WEAP hydrological model, where the period of 1978–1988 for calibration and 1989–1993 for validation, respectively. By using WEAP and General Circulation Model (GCM) outputs, both streamflow and subsequent water shortage during the baseline period (1994 – 2003) and midterm period (2046–2064) were simulated and compared to indicate the effect of climate change. Downscaled monthly rainfalls and temperatures under B1 and A2 emission scenarios from different GCMs were used to generate streamflow through WEAP model and subsequent water shortage. The results show that mean streamflow tends to increase around 10.1% in the wet season due to an increase in rainfall, but also tends to decrease in December (-4.4%), January (-1.0%), and February (-0.85%) of the dry season relative to the baseline scenario. Consequently, the downstream of the Thac Mo reservoir may face a big challenge in the dry season in terms of water use. In addition, water shortage at the downstream of the catchment increases around triple compared with the baseline scenario for consideration of a combined assessment of climate change impacts and socioeconomic development in this region.
1. Abrishamchi, A., Alizadeh, A., & Tajrishy, M. (2007) Water resources management scenario analysis in the Karkheh river basin, Iran using the WEAP model. Hydrol. Sci. Technol. 23(1–4), 1–12.
2. Alemayehu, T., McCartney, M., & Kebede, S. (2010). The water resource implications of planned development in the Lake Tana catchment, Ethiopia.Ecohydrology & Hydrobiology, 10(2), 211-221
3. Andersson, L., Wilk, J., Todd, M. C., Hughes, D. A., Earle, A., Kniveton, D., & Savenije, H. H. (2006). Impact of climate change and development scenarios on flow patterns in the Okavango River. Journal of Hydrology, 331(1), 43-57.
4. Arnold, J. G., & Allen, P. M. (1999). Automated methods for estimating baseflow and ground water recharge from streamflow records.
5. Asner, G. P., Scurlock, J. M., & A Hicke, J. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12(3), 191-205.
6. Bhave, A. G., Mishra, A., & Raghuwanshi, N. S. (2014). Evaluation of hydrological effect of stakeholder prioritized climate change adaptation options based on multi-model regional climate projections. Climatic change, 123(2), 225-239.
7. Boyle, D. P., H. V. Gupta, & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Res. 36(12): 3663-3674.
8. Chu, J., Zhang, C., Wang, Y., Zhou, H., & Shoemaker, C. A. (2012). A watershed rainfall data recovery approach with application to distributed hydrological models. Hydrological Processes, 26(13), 1937-1948.
9. Devkota, L. P., & Gyawali, D. R. (2015). Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal. Journal of Hydrology: Regional Studies, 4, 502-515.
10. Doherty, J. (2002). Model independent parameter estimation (PEST) user’s manual, 5th Ed., Watermark Numerical Computing, Bethesda, MD.
11. Esteve, P., Varela-Ortega, C., Blanco-Gutiérrez, I., & Downing, T. E. (2015). A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics, 120, 49-58.
12. FAO. (1995). Digital soil map of the world and derived soil properties. Food and Agriculture Organization of the United Nation, Rome, 1995.
13. Githui, F., Gitau, W., Mutua, F., & Bauwens, W. (2009). Climate change impact on SWAT simulated streamflow in western Kenya. International Journal of Climatology 29: 1823-1834.
14. Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135-143.
15. Hamlat, A., Errih, M., & Guidoum, A. (2013). Simulation of water resources management scenarios in western Algeria watersheds using WEAP model.Arabian Journal of Geosciences, 6(7), 2225-2236.
16. Harma, K. J., Johnson, M. S., & Cohen, S. J. (2012). Future water supply and demand in the Okanagan Basin, British Columbia: a scenario-based analysis of multiple, interacting stressors. Water Resources Management, 26(3), 667-689.
17. Ingol Blanco, E. M., & McKinney, D. C. (2013). Modeling climate change impacts on hydrology and water resources: Case study Rio Conchos basin.
18. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: Synthesis report. IPCC, Geneva.
19. Joyce, B. A., Mehta, V. K., Purkey, D. R., Dale, L. L., & Hanemann, M. (2011). Modifying agricultural water management to adapt to climate change in California’s central valley. Climatic change, 109(1), 299-316
20. Joyce, B.A., Mehta, V.K., Purkey, D.R., Dale, L.L., & Hanemann, M. (2011). Modifying agricultural water management to adapt to climate change in California’s central valley. Climatic Change 109 (1), 299–316.
21. Kannan, N., White, S. M., Worrall, F., & Whelan, M. J. (2007). Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology, 332(3), 456-466.
22. Kawasaki, A., Takamatsu, M., He, J., Roger, P., & Herath, S. (2010). An integrated approach to evaluate potential impact of precipitation and land-use change on streamflow in Srepok River Basin. Theory and Applications of GIS 18 (2): 9-20.
23. Khoi, D. N. (2013). Research for evaluating the change of hydrological
processes and sediment yield considering the impact of climate and land-use changes. PhD thesis, University of Yamanashi, Japan.
24. Kim, U., Kaluarachchi, J.J. (2009). Climate change impacts on water resources in the upper Blue Nile river basin, Ethiopia. Journal of the American Water Resources Association 45 (6): 1361-1378.
25. Kiparsky, M., Joyce, B., Purkey, D., & Young, C. (2014) Potential impacts of climate warming on water supply reliability in the Tuolumne and Merced River Basins, California. PLoS ONE 9(1): e84946. doi:10.1371/journal.pone.0084946
26. Kiparsky, M., Joyce, B., Purkey, D., Young, C. (2014) Potential impacts of climate warming on water supply reliability in the Tuolumne and Merced River Basins, California. PLoS ONE 9(1): e84946. doi:10.1371/journal.pone.0084946.
27. Kundzewicz, Zbigniew, W., et al. Freshwater resources and their management (2007): 173-210.
28. Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H.G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of Earth, 27(27), 645-654.
29. Mehta, V.K., Rheinheimer, D.E., Yates, D., Purkey, D.R., Viers, J.H., Young, C.A., & Mount, J.F. (2011). Potential impacts on hydrology and hydropower production
under climate warming of the Sierra Nevada. J. Water Climate Change 2 (1), 29–43.
30. Mehta, V. K., Haden, V. R., Joyce, B. A., Purkey, D. R., & Jackson, L. E. (2013). Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California. Agricultural water management, 117, 70-82.
31. MONRE–Vietnam Ministry of Natural Resources and Environment (2009) Climate Change, Sea Rise Scenarios for Vietnam, Hanoi.
32. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
33. Nam, D. H., Udo, K., & Mano, A. (2016). Climate change impacts on runoff regimes at a river basin scale in Central Vietnam.
34. Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual moels. Part I - A discussion of principles. J. Hydrology 10 (3), 282-290.
35. Nghi, V.V. (2002). Rainfall-runoff and hydrodynamic modelling in the Dong Nai river basin, Vietnam. M.Sc. Thesis HH 429, International Institute for Infrastructural, Hydraulic and Environmental Engineering (IHE), Delft, the Netherlands.
36. Ospina Noreña, J. E., Gay García, C., Conde, A. C., & Sánchez Torres Esqueda, G. (2011). A proposal for a vulnerability index for hydroelectricity generation in the face of potential climate change in Colombia. Atmósfera, 24(3), 329-346.
37. Ospina Noreña, J. E., Gay García, C., Conde, A. C., Magaña, V., & Sánchez Torres Esqueda, G. (2009). Vulnerability of water resources in the face of potential climate change: generation of hydroelectric power in Colombia.Atmósfera, 22(3), 229-252
38. Phan, D. B., Wu, C. C., Hsieh, S. C. (2011). Impact of climate change on stream discharge and sediment yield in northern Vietnam. Water Resources 38(6): 827-836.
39. Purkey, D. R., Joyce, B. A., Vicuna, S., Hanemann, M. W., Dale, L. L., Yates, D., & Dracup. J. A. (2008). Robust analysis of future climate change impacts on water for agriculture and other sectors: A case study in the Sacramento Valley. Climatic Change 87(suppl 1):S109–S122.
40. Purkey, D. R., Huber-Lee, A., Yates, D. N., Hanemann, M., & Herrod-Julius, S. (2007). Integrating a climate change assessment tool into stakeholder-driven water management decision-making processes in California. Water Resources Management, 21(1), 315-329.
41. Rochdane, S., B. Reichert, M. Messouli, A. Babqiqi, & M.Y. Khebiza. (2012). Climate change impacts on water supply and demand in RherayaWatershed (Morocco), with potential adaptation strategies. Water, 4(1), 28-44.
42. Rosenzweig, C., Strzepek, K. M., Major, D. C., Iglesias, A., Yates, D. N., McCluskey, A., & Hillel, D. (2004). Water resources for agriculture in a changing climate: international case studies. Global Environmental Change, 14(4), 345-360.
43. Rosenzweig, C., Strzepek, K. M., Major, D. C., Iglesias, A., Yates, D. N., McCluskey, A., & Hillel, D. (2004). Water resources for agriculture in a changing climate: international case studies. Global Environmental Change, 14(4), 345-360.
44. Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. J. American Water Resources Assoc. 37(5): 1169-1188.
45. Santikayasa, I. Putu., Mukand S. Babel, & Sangam Shrestha. (2015). Assessment of the impact of climate change on water availability in the Citarum River Basin, Indonesia: The use of statistical downscaling and water planning tools. Managing Water Resources under Climate Uncertainty. Springer International Publishing: 45-64.
46. Sieber, J., & Purkey, D. (2007). Water evaluation and planning system user guide for WEAP21. Stockholm Environment Institute, US Center.
47. Skaggs, R. W., & Khaleel, R. (1982). Infiltration. Hydrologic modeling of small watersheds. ASAE Monogr, 5, 121-166.
48. Thompson, I. R., Green, A. I., Kingston, D. G., & Gosling, S. N. (2013). Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. J Hydrol 486:1–30.
49. Tran, H. T., & Tran, T. (2011). Impacts of climate change on the flow in Hong-Thai Binh and Dong Nai river basins.
50. Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of hydrology, 324(1), 10-23.
51. Van Griensven, A., Francos, A., & Bauwens, W. (2002). Sesitivity analysis and auto-calibration of an integral dynamic model for river water quality. Water Science and Technology, 45, 325 32.
52. Vicuña, S., Garreaud, R. D., & McPhee, J. (2011). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change,105(3-4), 469-488.
53. Vietnam government, National strategy on climate change (2011).
54. Vo, N. D., Gourbesville, P., Vu, M. T., Raghavan, S. V., & Liong, S. Y. (2015). A deterministic hydrological approach to estimate climate change impact on river flow: Vu Gia–Thu Bon catchment, Vietnam. Journal of Hydro-environment Research.
55. Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17:145–157.
56. Yates, D., Sieber, J., Purkey, D., & Huber-Lee, A. (2005a). WEAP21: A demand, priority, and preference driven water planning model: Part 1, model characteristics. Water International 30:487–500.
57. Yates, D., Sieber, J., Purkey, D., Huber-Lee, A., & Galbraith, H. (2005b). WEAP21: A demand, priority, and preference driven water planning model: Part 2, Aiding freshwater ecosystem service evaluation. Water International 30:501–512.
58. Yates, D., Purkey, D., Sieber, J., Huber-Lee, A., Galbraith, H., West, J., Herrod-Julius, S., Young C., Joyce, B., & Rayej, M. (2009). Climate driven water resources model of the Sacramento basin. Journal of Water Resources Planning and Management, American Society of Civil Engineers, Vol. 135 (5), 303-313.
59. Zhang, X., Srinivansan, R., Hao, F. (2007). Predicting hydrologic response to climate change in the Luohe River Basin using SWAT model. Transactions of the ASABE 50 (3): 901-910.