簡易檢索 / 詳目顯示

研究生: 陳達進
Chen, Da-Jin
論文名稱: 高效率低成本數位控制適配器之研究與設計
Study and Design of High-Efficiency Low-Cost Adapter with Digital Control
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 120
中文關鍵詞: AC-DC適配器返馳式轉換器一次側回授定電壓控制限/定電流控制準諧振切換控制峰值電流延遲補償數位控制
外文關鍵詞: Adapter, Flyback, Primary-Side Regulation (PSR), Quasi-Resonant (QR), Constant Voltage (CV), Constant Current (CC), Over-Current Protection (OCP), Propagation Delay Compensation, Digital Control
相關次數: 點閱:239下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究題目為高效率低成本數位控制適配器,詳細探討了低成本一次側感測方式及高效率準諧振切換於類比文獻實現做法,再從類比研究議題中帶入數位化研究現況,並說明數位與類比實現差異。本論文作品根據研究結果設計一數位式一次側回授及準諧振切換之數位返馳式控制器,具輸出電壓控制及過電流保護,符合現行手機適配器功用與規格標準,所實現之數位準諧振軟切技術能改善傳統開關硬切下切換損於輕載過高問題,如此可提高系統平均效率達到本論文高效率研究目的,最後以FPGA系統完成控制驗證與系統量測。
    本論文作品貢獻為針對適配器一次側感測於輸出電流控制下因傳輸延遲關係造成峰值電流誤差,提出一種新型數位峰值電流延遲補償方法,可解決於不同輸入電壓大小下限電流漂移問題,相比目前數位文獻實現方式,透過本作品所提出之兩週期平均補償(Two-Cycle-Averaged Compensation)可以降低數位硬體實現成本,並且不失補償效果,最後本作品電流誤差量測結果為±1.6%,符合目標規格±5%。

    In this paper, the research topic is a high efficiency and low cost digital control adapter, which discusses the low-cost Primary-Side Regulation (PSR) for Output Voltage and Current, and the high-efficiency Quasi-Resonant (QR) Soft Switching control. Based on the research results, this paper designed a digital PSR QR Flyback controller. It has output Constant Voltage (CV) control and Over-Current Protection (OCP), which conforms to the nowadays efficiency standard and application of mobile phone USB adapter. Finally, the controller realized by FPGA and completed system verification.
    This paper proposed novel digital peak current delay compensation method which named as Two-Cycle-Averaged that can solve current variation by the difference of universal input voltage in OCP issues, which is the peak current error problem caused by the Propagation Delay under the output current control. This work can reduce the cost of digital hardware, and without losing the compensation effect. Finally the voltage and current error measurement results of this work are ± 1% and ± 1.6%, which reached the target error within 5%.

    摘要 I 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 1 第一章 緒論 1 1.1 研究動機 1 1.2 目標與貢獻 4 1.3 論文架構簡介 4 2 第二章 返馳式轉換器及AC-DC適配器 5 2.1 返馳式轉換器 5 2.1.1 操作模式 6 2.1.2 系統及工作原理 8 2.1.3 峰值電流控制法及傳統二次側回授 12 2.1.4 前端及輔助電路 15 2.2 AC-DC適配器 17 2.2.1 筆記型電腦適配器 17 2.2.2 手機及平板電腦適配器 19 3 第三章 使用一次側回授及準諧振切換控制之高效率返馳式轉換器 21 3.1 一次側回授定電壓控制(PSR-CV) 21 3.1.1 原理 22 3.1.2 議題及研究現況 23 3.1.3 數位化研究現況 37 3.1.4 比較與討論 44 3.2 一次側回授限/定電流控制(PSR-CC) 48 3.2.1 原理 48 3.2.2 議題及研究現況 50 3.2.3 數位化研究現況 56 3.2.4 比較與討論 59 3.3 準諧振切換控制(QR) 61 3.3.1 原理 61 3.3.2 議題及研究現況 63 3.3.3 數位化研究現況 71 3.3.4 比較與討論 73 3.4 數位控制商品實例 77 4 第四章 具一次側回授及準諧振切換之數位返馳式適配器 78 4.1 目標與應用 78 4.2 規格與架構 78 4.3 功率級與外掛元件的選擇 80 4.4 數位控制器設計 83 4.4.1 一次側回授定電壓演算法(CV Loop) 85 4.4.2 一次側回授限/定電流演算法(CC Loop) 89 4.4.3 QR波谷偵測演算法 93 4.4.4 限/降頻演算法 93 4.5 模擬設計平台及系統建模 95 4.6 模擬驗證結果 96 5 第五章 FPGA系統實作與量測驗證 100 5.1 實作平台與電路板設計 100 5.2 量測規劃與量測環境 103 5.3 穩態量測 104 5.4 暫態量測 108 5.5 效率量測 109 5.6 成果比較與討論 110 6 第六章 結論 112 6.1 總結與貢獻 112 6.2 未來工作與研究方向 112 7 參考文獻 115

    [1] CUI. "Efficiency Standards for External Power Supplies" [Online]. Available: http://www.jp.cui.com/catalog/resource/efficiency-standards-for-external-power-supplies.pdf
    [2] Texas Instruments. "Keeping up with the standards: Efficiency and standby power requirements" [Online]. Available: https://e2e.ti.com/blogs_/b/powerhouse/archive/2016/05/12/keeping-up-with-the-standards-efficiency-and-standby-power-requirements
    [3] USB-IF. "USB Power Delivery Specification" [Online]. Available: http://www.usb.org/developers/powerdelivery/
    [4] Texas Instruments. "Power Management Guide" [Online]. Available: http://www.ti.com/lit/sg/slvt145q/slvt145q.pdf
    [5] E. Walker. "Design Review: A Step-By-Step Approach to AC Line-Powered Converters" [Online]. Available: www.ti.com/lit/pdf/slup229
    [6] Texas Instruments. "Exposing the Inner Behavior of a Quasi-Resonant Flyback Converter" [Online]. Available: www.ti.com/lit/slup302
    [7] O. Semiconductor. DC-DC Converters Feedback and Control [Online]. Available: http://www.onsemi.cn/pub_link/Collateral/TND352-D.PDF
    [8] Texas Instruments. "Differences between PSR and SSR in bias power-supply design" [Online]. Available: http://e2e.ti.com/blogs_/b/powerhouse/archive/2016/04/08/differences-between-psr-and-ssr-in-bias-power-supply-design
    [9] Texas Instruments. "Control Challenges for Low Power AC/DC Converters" [Online]. Available: www.ti.com/lit/slup325
    [10] S. Maniktala, "Chapter 10 - Off-line Converter Design and Magnetics A2 - Brown, Marty," in Power Sources and SuppliesBurlington: Newnes, 2008, pp. 295-343.
    [11] A. A. Saliva. "Design Guide for Off-line Fixed Frequency DCM Flyback Converter" [Online]. Available: www.mouser.com/pdfdocs/2-8.pdf
    [12] Richtek. "Feedback Control Design of Off-line Flyback Converter" [Online]. Available: www.richtek.com/assets/AppNote/AN017_EN/AN017.pdf
    [13] ON-Semiconductor. "DC-DC Converters Feedback and Control" [Online]. Available: http://www.onsemi.cn/pub/Collateral/TND352-D.PDF
    [14] C. Basso, Switch-Mode Power Supplies Spice Simulations and Practical Designs. McGraw-Hill, Inc., 2008, p. 889.
    [15] Texas Instruments. "Utilizing Ripple Steering in Forward and Flyback Converters and Input Filters" [Online]. Available: http://www.ti.com/lit/an/snva563/snva563.pdf
    [16] L. Jianquan, S. Quanhui, Y. Wei, S. Yingchun, A. Bhobe, and Y. Jinghan, "Analytical calculation of conducted EMI in flyback converters," in 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2016, vol. 01, pp. 395-397.
    [17] Richtek. "Conducted EMI Reduction by means of Hybrid Common Choke" [Online]. Available: http://www.richtek.com/assets/AppNote/AN008/AN008.pdf
    [18] Linear. "No-Opto Flyback DC/DC Converters & Snubber Protection Circuits" [Online]. Available: http://www.linear.com/solutions/7780
    [19] Fairchild. "Design Guidelines for RCD Snubber of Flyback Converters" [Online]. Available: https://www.fairchildsemi.com/application-notes/AN/AN-4147.pdf
    [20] Texas Instruments. "Notebook Computer Guide" [Online]. Available: http://www.ti.com/litv/pdf/slyy016a
    [21] Texas Instruments. UCC28600. "Quasi-Resonant Flyback Green-Mode Controller" [Online]. Available: http://www.ti.com/lit/ds/symlink/ucc28600.pdf
    [22] Texas Instruments. UCC28610. "Green-Mode Flyback Controller" [Online]. Available: http://www.ti.com/lit/ds/symlink/ucc28610.pdf
    [23] Texas Instruments. "TI Smartphone Solutions" [Online]. Available: www.ti.com/lit/sl/slyy032a/slyy032a.pdf
    [24] Texas Instruments. UCC28722. "Constant-Voltage, Constant-Current Controller With Primary-Side Regulation, BJT Drive" [Online]. Available: http://www.ti.com/lit/ds/symlink/ucc28722.pdf
    [25] Fairchild. AN-6093. "Design Guideline for Flyback Charger Using FAN104WMX" [Online]. Available: https://www.fairchildsemi.com/application-notes/AN/AN-6093.pdf
    [26] Linear, "Switching regulator circuit using magnetic flux-sensing," Patent US5305192 A, 1991.
    [27] B. Yongjiang, C. Wenjie, Y. Xiaoyu, Y. Xu, and S. Jingjing, "A novel constant current and constant voltage adaptive blanking regulation scheme for primary-side controlled flyback converter," in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016, pp. 1652-1659.
    [28] Richtek. R7710. "Primary Feedback CC/CV PWM Controller for Flyback Converters" [Online]. Available: http://www.richpower-ic.com/video/6krtjmcs.pdf
    [29] T. H. Tsai, K. H. Chen, and T. Y. Tsai, "99% High accuracy knee voltage detection for primary-side control in flyback converter," in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 1754-1757.
    [30] S. H. Yang, T. H. Tsai, and K. H. Chen, "High Accuracy Knee Voltage Detection for Primary-Side Control in Flyback Battery Charger," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4, pp. 1003-1012, 2017.
    [31] SystemGeneral, "Primary-side controlled flyback power converter " Patent US6853563 B1, 2003.
    [32] SystemGeneral, "Flyback power converter having a constant voltage and a constant current output under primary-side PWM control " Patent US6862194 B2, 2003.
    [33] C. Semiconductor, "Switch mode power supply controller with feedback signal decay sensing " Patent US8446746, 2006.
    [34] Fairchild, "Switching mode power supply and driving method thereof " Patent US7710746 B2, 2008.
    [35] Richtek, "Apparatus and method for regulating constant output voltage and current on primary side in a flyback converter " Patent US7859862 B2, 2008.
    [36] X. Jianguo, W. Jiande, L. Wuhua, and H. Xiangning, "Primary-side controlled flyback converter with current compensation in micro-power applications," in 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 1361-1366.
    [37] Leadtrend, "Sample-and-hold circuit for generating a variable sample delay time of a transformer and method thereof " Patent US8766670 B2, 2012.
    [38] PowerIntegrations, "Sample and hold buffer " Patent US8929102 B2, 2012.
    [39] Y. T. Lin, T. J. Liang, and K. H. Chen, "IC design of primary-side control for flyback converter," in 2013 1st International Future Energy Electronics Conference (IFEEC), 2013, pp. 449-453.
    [40] P. C. Hsieh, C. J. Chang, and C. L. Chen, "A primary-side-control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching," in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 3406-3412.
    [41] C. C. Chiu, M. Lin, C. W. Chang, C. H. Meng, H. A. Yang, and K. H. Chen, "Self-Calibrated Knee Voltage DetectorWith 99.65% High Accuracy for AC Charger System in 0.5 500 V UHV Process," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 10, pp. 2786-2795, 2014.
    [42] iWatt, "Power converter controller controlled by variable reference voltage generated by dual output digital to analog converter," Patent US7589983 B1, 2006.
    [43] J.-p. Qiu, L.-n. He, and Y.-l. Wang, "A multimode digital controller IC for flyback converter with high accuracy primary-side feedback," Journal of Zhejiang University SCIENCE C, vol. 14, no. 8, pp. 652-662, 2013.
    [44] C. W. Chang, Y. T. Lin, and Y. Y. Tzou, "Digital primary-side sensing control for flyback converters," in 2009 International Conference on Power Electronics and Drive Systems (PEDS), 2009, pp. 689-694.
    [45] S. H. Kang and D. Maksimović, "Simplified sensing and A/D conversion for digitally controlled flyback DC-DC converters with on-line efficiency optimization," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 1075-1082.
    [46] 邱建平, "基於模擬與數字控制技術的電源管理芯片關鍵技術研究," 中國浙江大學博士論文, 2013.
    [47] C. Wang, S. Xu, X. Fan, S. Lu, and W. Sun, "Novel Digital Control Method for Improving Dynamic Responses of Multimode Primary-Side Regulation Flyback Converter," IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1457-1468, 2017.
    [48] Active-Semi, "Primary side constant output current controller," Patent US7388764 B2, 2005.
    [49] 綠達光電, "可提供负载补偿的电源控制器以及相关的控制方法 " Patent CN104734506 A, 2013.
    [50] J. Shao and STMicroelectronics, "A highly accurate constant voltage (CV) and constant current (CC) primary side controller for offline applications," in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 3311-3316.
    [51] SystemGeneral, "PWM controller having a saw-limiter for output power limit without sensing input voltage " Patent US6674656, 2002.
    [52] PowerIntegrations, "Method and apparatus for maintaining a constant load current with line voltage in a switch mode power supply " Patent US6781357, 2001.
    [53] P. L. Huang, D. Chen, C. J. Chen, and Y. M. Chen, "An Adaptive High-Precision Overpower Protection Scheme for Primary-Side Controlled Flyback Converters," IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 2817-2824, 2011.
    [54] H. H. Chou, Y. S. Hwang, and J. J. Chen, "An Adaptive Output Current Estimation Circuit for a Primary-Side Controlled LED Driver," IEEE Transactions on Power Electronics, vol. 28, no. 10, pp. 4811-4819, 2013.
    [55] C. N. Wu, Y. L. Chen, and Y. M. Chen, "Primary-Side Peak Current Measurement Strategy for High-Precision Constant Output Current Control," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 967-975, 2015.
    [56] Z. Zhu, Q. Wu, and Z. Wang, "Self-Compensating OCP Control Scheme for Primary-Side Controlled Flyback AC/DC Converters," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3673-3682, 2017.
    [57] iWatt, "On-time control for constant current mode in a flyback power supply " Patent US7443700 B2, 2007.
    [58] iWatt, "System and method for controlling a current limit with primary side sensing using a hybrid PWM and PFM control " Patent US7974107 B2, 2008.
    [59] K. Liu, L. He, and J. Qiu, "A Digital Controller Based on Primary Side Regulation with Improved Accuracy for LED Application," Journal of Circuits, Systems and Computers, vol. 24, no. 03, p. 1550034, 2015.
    [60] M. H. Rashid, Power Electronics Handbook. Elsevier Science, 2011.
    [61] K. H. Liu, R. Oruganti, and F. C. Y. Lee, "Quasi-Resonant Converters-Topologies and Characteristics," IEEE Transactions on Power Electronics, vol. PE-2, no. 1, pp. 62-71, 1987.
    [62] W. A. Tabisz, P. Gradzki, and F. C. Lee, "Zero-voltage-switched quasi-resonant buck and flyback converters - Experimental results at 10 MHz," in 1987 IEEE Power Electronics Specialists Conference, 1987, pp. 404-413.
    [63] J. B. Lio, M. S. Lin, D. Y. Chen, and W. S. Feng, "Single-switch soft-switching flyback converter," Electronics Letters, vol. 32, no. 16, pp. 1429-1430, 1996.
    [64] X. C. X. Liu, Y. Zhang, X. Zou, and S. Lin, "An overview of soft-switching technique for flyback converters," in 2015 IEEE 11th International Conference on ASIC (ASICON), 2015, pp. 1-4.
    [65] Richtek, "Circuit and method for predicting a valley timing for a voltage across a switching device " Patent US7907425 B2/US8279634 B2, 2006.
    [66] H. Chen, M. L. Zhao, X. B. Wu, and X. L. Yan, "Multi-mode controller IC for soft-switched flyback converter with high efficiency over the entire load range," Journal of Zhejiang University SCIENCE A, vol. 9, no. 10, pp. 1411-1419, 2008.
    [67] Grenergy, "Quasi-resonant valley voltage detecting method and apparatus " Patent US7876085 B2, 2009.
    [68] Z. Hulong, J. M. Zhang, X. C. Huang, W. Yuan, X. K. Wu, and M. Chen, "An adaptive blanking time control scheme for audible noise free quasi resonant Flyback converter," in 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 1104-1109.
    [69] G. B. Koo, S. C. Moon, and J. T. Kim, "A new valley-detection method for the quasi-resonance switching," in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 540-543.
    [70] K. H. Chen and T. J. Liang, "Design of Quasi-resonant flyback converter control IC with DCM and CCM operation," in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014, pp. 2750-2753.
    [71] Y. C. Kang, C. C. Chiu, M. Lin, C. P. Yeh, J. M. Lin, and K. H. Chen, "Quasiresonant Control With a Dynamic Frequency Selector and Constant Current Startup Technique for 92% Peak Efficiency and 85% Light-Load Efficiency Flyback Converter," IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4959-4969, 2014.
    [72] J. Park et al., "Quasi-Resonant (QR) Controller With Adaptive Switching Frequency Reduction Scheme for Flyback Converter," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3571-3581, 2016.
    [73] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, 2002.
    [74] W. Langeslag, R. Pagano, K. Schetters, A. Strijker, and A. v. Zoest, "A High-Voltage Compatible BCD SoC-ASIC Performing Valley-Switching Control of AC-DC Power Converters Based on PFC and Flyback Cells," in IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, 2006, pp. 2996-3001.
    [75] Y. Panov and M. M. Jovanovic, "Adaptive off-time control for variable-frequency, soft-switched flyback converter at light loads," IEEE Transactions on Power Electronics, vol. 17, no. 4, pp. 596-603, 2002.
    [76] iWatt, "Valley-mode switching schemes for switching power converters " Patent US8755203 B2, 2009/12/18.
    [77] iWatt. iW1692. "Low-Power Off-line Digital PWM Controller" [Online]. Available: https://www.dialog-semiconductor.com/sites/default/files/iw1692-datasheet.pdf
    [78] iWatt. iW1679-50. "Off-Line Digital Green-Mode Quasi-Resonant PWM Controller" [Online]. Available: http://www.jingbei.com/pdf/iW1679-50%20Datasheet_Cust.pdf
    [79] Leadtrend. LD7515L. "Primary Side Quasi-Resonant BJT Controller with CV/CC Operation" [Online]. Available: http://www.leadtrend.com.tw/archive/doc/product/sheets/LD7515L-DS-00.pdf
    [80] Fairchild. AN-6067. "Design and Application of Primary-Side Regulation (PSR) PWM Controller" [Online]. Available: https://www.fairchildsemi.com/application-notes/AN/AN-6067.pdf
    [81] P. Zumel et al., "Co-simulation PSIM-ModelSim oriented to digitally controlled switching power converters," in 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), 2010, pp. 1-7.
    [82] A. Thangavelu, M. V. Varghese, and M. V. Vaidyan, "Novel FPGA based controller design platform for DC-DC buck converter using HDL Co-simulator and Xilinx System Generator," in Industrial Electronics and Applications (ISIEA), 2012 IEEE Symposium on, 2012, pp. 270-274.
    [83] C. S. Huang and S. S. Wang, "Modeling and design of cable compensation for a primary side regulation (PSR) flyback converter," in 2013 1st International Future Energy Electronics Conference (IFEEC), 2013, pp. 697-703.
    [84] C. Chang, Y. Xu, B. Bian, and X. Zhao, "A High-Precision CV/CC AC-DC Converter Based on Cable and Inductance Compensation Schemes," IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6372-6382, 2016.
    [85] iWatt, "Digital Compensation For Cable Drop In A Primary Side Control Power Supply Controller " Patent US7974109 B2, 2007.
    [86] S. H. Yang, C. C. Chiu, C. W. Chang, C. M. Chen, C. H. Meng, and K. H. Chen, "87% Overall High Efficiency and 11 μA Ultra-Low Standby Current Derived by Overall Power Management in Laptops With Flexible Voltage Scaling and Dynamic Voltage Scaling Techniques," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 3118-3127, 2016.
    [87] K. H. Chen, T. J. Liang, and B. K. Huang, "A new adaptive output voltage controller for fast battery charger," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 3345-3351.
    [88] Richtek. "Solution for USB PD Type C" [Online]. Available: http://szfujiawei.com/upload/cases/2015101511225767.pdf
    [89] F. Jian, L. Zhiping, L. Zehong, and L. Zhaoji, "A new flyback converter with primary side detection and peak current mode control," in IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002, vol. 2, pp. 1707-1710 vol.2.
    [90] T. T. Vu, S. O. Driscoll, and J. V. Ringwood, "Primary-side sensing for a flyback converter in both continuous and discontinuous conduction mode," in IET Irish Signals and Systems Conference (ISSC 2012), 2012, pp. 1-6.
    [91] T. J. Liang, K. H. Chen, and J. F. Chen, "Primary Side Control for Flyback Converter Operating in DCM and CCM," IEEE Transactions on Power Electronics, vol. PP, no. 99, pp. 1-1, 2017.
    [92] Texas Instruments. UCC28630, UCC28631, UCC28632 and UCC28633. "High-Power Flyback Controller with Primary-Side Regulation and Peak-Power Mode" [Online]. Available: http://www.ti.com/lit/ds/symlink/ucc28631.pdf
    [93] Q. Wu, Y. Li, W. Guo, and Z. Zhu, "A Low Standby Power Primary-Side Regulated Flyback Controller with Fast Dynamic Response," Journal of Circuits, Systems and Computers, vol. 24, no. 05, p. 1550069, 2015.
    [94] Philips(NXP), W. Langeslag, R. Pagano, K. Schetters, A. Strijker, and A. v. Zoest, "VLSI Design and Application of a High-Voltage-Compatible SoC–ASIC in Bipolar CMOS/DMOS Technology for AC–DC Rectifier," IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2626-2641, 2007.
    [95] C. Adragna, D. Ciambellotti, M. Dell'Oro, and F. Gallenda, "Digital implementation and performance evaluation of a time-shift-controlled LLC resonant half-bridge converter," in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, 2014, pp. 2074-2080.
    [96] F. Wang, B. A. McDonald, J. Langham, and B. Fan, "A novel adaptive synchronous rectification method for digitally controlled LLC converters," in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 2016, pp. 334-338.

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE