| 研究生: |
林仁義 Lin, Ren-Yi |
|---|---|
| 論文名稱: |
兼具電壓式與電流式之微機電電阻式呼吸感測系統單晶片 Design of a Respiration Detection Single Chip by Using Both Voltage- and Current-Mode MEMS Sensors |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 微機電系統 、呼吸感測 、懸臂樑 |
| 外文關鍵詞: | respiration detection system, cantilever, MEMS |
| 相關次數: | 點閱:103 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
呼吸訊號是人體重要的生理訊號之一,尤其對於嬰幼兒與老年人。因此本論文實現一個整合感測器與電路的呼吸感測微機電系統,在晶片中實現微尺寸的懸臂樑結構與前端放大和濾波之電路。感測器會因所受的外力及溫度的變化,而產生電阻值的改變,而本系統以兩種方式來將電阻值轉換成電訊號,分別為電流式與電壓式,並設計對應之放大電路,此外,系統中亦包含低頻的低通濾波器,其截止頻率為2.6Hz。
本論文呈現詳細感測器、電路與系統的模擬與量測結果,包含感測器對壓力與溫度變化而產生形變與電阻值變化的模擬,及實際感測器的結構和及溫度的影響、系統對呼吸、流速與溫度的量測結果。比較模擬與量測的結果,則可推導與修正感測器的模型。晶片大小為1.32x2.28mm2,電壓式系統消耗2.87mW,電流式系統消耗10.23mW,另外,此晶片是採用0.35μm2P4M製程以及加上MEMS後製程製作。
Respiration is one of the most important physiological signals of human, especially when taking care of babies and elders. A respiration detection system integrating both sensors and circuits into a single chip has been implemented. This system includes the micro-sized cantilever structure and the sensing circuits that can amplify and filter the sensed signal. When the pressure applied on the cantilever or the temperature changes, the resistance of the sensor changes. Two types of circuits are designed in this work to convert the variation of resistance to either voltage or current signal, which then is amplified. Moreover, a low-pass filter with its cutoff frequency locating at 2.6Hz was designed and implemented into the chip.
Both simulation and measurement results of sensors, sensing circuits, and the overall system are presented in the thesis, including the simulation and measurement of the sensors’ characteristics with respect to the applied pressure and temperature, and the data by measuring respiration, flow speed and different temperatures. By analyzing these data, the accuracy of sensor modeling can be greatly improved, which plays an important role for future design. The voltage-mode system dissipates 2.87 mW and the current-mode system dissipates 10.23 mW. Besides the chip size is 1.32x2.28 mm2 and is fabricated by using 0.35um 2P4M CMOS process and MEMS post-process.
[1] J. G. Webster, “Measurements of the Respiratory System,” Medical Instrumentation : Application and Design. New York: Wiley, 1998, ch. 9.
[2] I. T. Tseng, “Design of an infant respiration detection instrument by use of a MEMS piezo-resistive sensor,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., 2008.
[3] C. L. Wei, C. F. Lin, and I. T. Tseng, “A novel MEMS respiratory flow sensor,” IEEE Sensors J., vol. 10, no. 1, Jan. 2010.
[4] T. H. Liu, “Design of an infant respiration detection system on a single chip by use of a micro-cantilever flow sensor,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., 2011.
[5] S. J. Azhari and H. Kaabi, “AZKA cell, the current-mode alternative of Wheatstone bridge,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 9, Sep. 2000.
[6] 蓋永鋒,微型壓阻式壓力感測器製作之研究,碩士論文,工程科學系,國立成功大學,臺南,2000。
[7] S. D. Senturia, Microsystems Design, Boston, MA: Kluwer Academic, 2000.
[8] E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, no. 2, pp. 287-294, Apr. 1987.
[9] D. Li, T. Li, and D. Zhang, “A monolithic piezoresistive pressure-flow sensor with integrated signal-conditioning circuit,” IEEE Sensor J., vol. 11, no. 9, pp. 2122-2128, Sep. 2011.
[10] C. L. Dai and M. C. Liu, “Complementary metal–oxide–semiconductor microelectromechanical pressure sensor integrated with circuits on chip,” Jpn. J. Appl. Phys., vol. 46, no. 2, pp. 843-848, 2007.
[11] S. Chaurasia and B.S. Chaurasia, “Design and simulation of low pressure piezoresistive MEMS sensor using analytical models,” in proc. 2012 Students Conf. on Engineering and Systems (SCES), 2012, pp. 1-5.
[12] Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing micro-cantilever structure,” Sensors, vol. 7, pp.2389-2401, 2007.
[13] P. Bruschi, M. Dei, and M. Piotto, “An Offset Compensation Method with Low Residual Drift for Integrated Thermal Flow Sensors,” IEEE Sensors J., vol. 11, no. 5, pp. 1162-1168, May 2011.
[14] 陶宏洋,「第十四章呼吸系統監測」,重症醫學與護理,藝軒圖書出版社,臺北縣新店市,2003。
[15] S. J. Tsai, “Application of MEMS type sensors in designing an evaluation system for obstructive sleep apnea,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., 2010.
[16] P. Corbishley and E. Rodriguez-Villegas, “Breathing detection: Towards a miniturized, wearable, battery operated monitoring system,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, Jan. 2008.
[17] 臺大醫院醫學工程部,「生理監視器功能與參數量測原理簡介」,參考來源: http://www.ntuh.gov.tw/BMED/equipment/DocLib/生理監視器功能與參數量測原理簡介.aspx
[18] P. Várady, S. Bongár, and Z. Benyó, “Detection of airway obstructions and sleep apnea by analyzing the phase relation of respiration movement signals,” IEEE Trans. Instrum. Meas., vol. 52, no. 1, Feb. 2003.
[19] 楊家祥和陳俊傑,「阻塞型睡眠呼吸中止症候群的診斷與治療」,基層醫學,21卷11期,2006年11月,第306-311頁。
[20] N. Matsuzuka and T. Toriyama, “Analysis for piezoresistive property of heavily-doped polysilicon with upper and lower bounds,” J. Appl. Phys., vol. 108, pp. 064902-1-11, 2010.
[21] N. A. Gilda, S. Nag, S. Patil, M. S. Baghini, D. K. Sharma, and V. R. Rao, “Current excitation method for ΔR measurement in piezo-resistive sensors with a 0.3-ppm resolution,” IEEE Trans. Instrum. Meas., vol. 61, no. 3, Mar. 2012.
[22] M. Madou, Fundamentals of Microfabrication, New York: CRC Press, 1997.
[23] S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd ed. Oxford, UK: Oxford University Press, 2001.
[24] 陳丕宇,應用MEMS微型壓力感測器於風洞實驗之研究,碩士論文,航空太空工程學系,國立成功大學,臺南,2001。
[25] D. J. Comer, D. T. Comer, B. K. Casper, and J. R.Gonzalez, “An integrable ingle-pole lowpass filter for low-frequency operation,” Int. J. Electron., vol. 83, no. 1, pp. 49-54, 1997.
[26] W. Machowski, J. Jasielski, and S. Kuta, “Low Voltage Low Frequency Continuous Time CMOS Antialiasing Filters,” in proc. 14th Int. Conf. on Mixed Design of Integrated Circuits and Systems, 2007, pp. 641-644.
[27] A. Veeravalli, E. Sánchez-Sinencio, and J. Silva-Martínez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, no. 6, Jun. 2002.
[28] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, Jun. 2003.
[29] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.
[30] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of Prostate-Specific Antigen (PSA) Using Microcantilevers,” Nature biotechnology, vol. 19, pp. 856-860, Sep. 2001.
[31] 張文華,「嬰兒猝死」,嬰兒與母親,2003年2月。
[32] 張峰瑜,「sudden infant death syndrome: 嬰兒猝死症」,參考來源: http://gene.bhp.doh.gov.tw/index.php?mo=CaseaPaper&action=paper1_show&cate=Set1&csn=43&sn=118#PAGE_TOP
[33] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.
[34] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.