簡易檢索 / 詳目顯示

研究生: 胡宗伯
Hu, Thung-Bo
論文名稱: 數位控制之交-直流功因修正前置調節器研究與設計
Study and Design of Digitally-Controlled AC-DC Power Factor Preregulator
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 交流-直流轉換器切換式昇壓型轉換器功率因數修正前置調節器數位控制非線性載波控制總諧波失真改善
外文關鍵詞: AC/DC Converter, Switching Boost Converter, Power Factor Preregulator(PFP), Digital Control, Nonlinear Carrier Control(NLC), Total Harmonic Distortion(THD) Improvement
相關次數: 點閱:150下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要介紹現今功率因數修正技術。從功因修正器發展背景與研究動機,到各式功因修正技術的原理與架構,針對不同控制方法的實現探討其優劣。本論文使用非線性載波控制法實作,藉由非線性載波控制本身無須偵測輸入電壓資訊之優勢,使控制迴路設計相較於其他電流模式控制法(例如:平均電流控制法)簡單。且詳細的介紹此控制法於電壓迴路與電流迴路兩端的演算法設計與運作流程,並針對連續導通模式與不連續導通模式下,提出改善總諧波失真問題的解決方案。
    本論文以數位方式實現,控制迴路以Verilog撰寫,並以Altera DE2-115 FPGA開發板實作,並搭配自行設計PCB電路板完成功率級與外掛元件,共同達到系統閉迴路驗證。最後以實驗室自行設計的類比數位轉換器取代外掛IC AD7822,並驗證取代後系統仍正確運作。本論文可實際操作於廣輸入電壓範圍(90~264 Vac),並且達到功因值0.982,最低的總協波失真7%,且轉換效率可以達到97%,輸出功率100瓦之昇壓型功率因數修正器。

    This paper proposed a power factor correction technology nowadays. It introduces the power factor correction from the background and motivation to the various operation principles and power stage architectures. Focus on different controls, analysis the pros and cons. This paper proposed a digital nonlinear-carrier control (NLC) power factor correction technique that requires no input voltage sensing and the controller design is easier than other control (ex. Average current control). It introduces the voltage and current loop algorithm mechanism and operation flow in detail, and proposed a solution for improved the total harmonic distortion (THD) operated under the continuous conduction mode (CCM) and discontinuous conduction mode (DCM).
    Using the digital control to achieved this controller, and realized by FPGA(Altera DE2-115) in Verilog RTL. And with PCB design by myself, achieved the power stage architectures and plug-in elements completely. With the FPGA and PCB co-simulation to achieved closed-loop system verification. Finally, using the analog-to-digital converter by laboratory designed to replace the plug IC AD7822, and verify the system is still functioning properly.
    The system operates in wide input voltage range(90~264 Vac), and experimental results are shown for high power factor of 0.982, minimum of 7% total harmonic distortion and maximum of 97% efficiency in a 100W boost power factor correction(PFC).

    目錄 摘要 III 致謝 VII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1. 研究背景與動機 1 1.2. 相關研究與發展 2 1.3. 目標與貢獻 3 1.4. 論文架構與簡介 3 第二章 功率因數修正基本原理與設計 5 2.1. 功率因數定義 5 2.2. 功率因數修正電路基本架構 9 2.2.1. 功率級 9 2.2.2. 操作模式 12 2.2.3. 全橋整流器後端元件 14 2.2.4. 電磁干擾濾波器 15 2.3. 功率因數修正電路之控制方法 17 2.3.1. 平均電流控制法 17 2.3.2. 單週期控制法 19 2.3.3. 非線性載波控制法 24 2.3.4. 比較與討論 28 第三章 功率因數修正控制方法之數位化研究 30 3.1. 數位平均電流控制法 31 3.2. 數位單週期控制法 34 3.3. 數位非線性載波控制法 37 3.4. 比較與討論 41 第四章 數位非線性載波控制之交-直流轉換器設計 43 4.1. 目標與應用 43 4.2. 系統架構與規格 43 4.3. 系統設計平台簡介 44 4.4. 數位控制器設計 46 4.4.1. 非線性載波控制演算法 46 4.4.2. 比較器與S-R閂鎖器 51 4.4.3. 電壓迴路PI補償器 51 4.4.4. CCM/DCM THD改善 55 4.5. 系統模擬驗證 58 第五章 FPGA系統實作與量測驗證 62 5.1. 系統實作平台簡介 62 5.2. 量測規劃與量測環境 67 5.3. 穩態量測 69 5.4. 暫態量測 70 5.5. PF、THD與效率量測 71 5.6. 置換A/D轉換器 73 5.7. 成果比較與討論 78 第六章 結論 80 6.1. 總結與貢獻 80 6.2. 未來工作與研究方向 80 參考文獻 82

    [1] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, "Experimental studies on active and passive PFC circuits," in Telecommunications Energy Conference, 1997. INTELEC 97., 19th International, 1997, pp. 571-578.
    [2] P. R. Mohanty, A. K. Panda, and D. Das, "An active PFC boost converter topology for power factor correction," in 2015 Annual IEEE India Conference (INDICON), 2015, pp. 1-5.
    [3] T. Instruments. UCD3138064 Highly Integrated Digital Controller for Isolated Power With 64-kB Program Flash Memory [Online]. Available: http://www.ti.com/lit/ds/symlink/ucd3138064.pdf
    [4] G. S. L. Rossetto, and P. Tenti, "Control techniques for power factor correction converters," in Proc. Power Electron., Motion Control’ 94 Conf, 1994, pp. 1310–1318.
    [5] T. Instruments. UC3854. Enhanced High Power Factor Preregulator [Online]. Available: http://www.datasheetarchive.com/UC3854-datasheet.html
    [6] F. Semiconductor. ML4821. Power Factor Controller [Online]. Available: http://pdf.datasheetcatalog.com/datasheet/fairchild/ML4821.pdf
    [7] L. Zheren and K. M. Smedley, "A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator," IEEE Transactions on Power Electronics, vol. 13, pp. 501-510, 1998.
    [8] D. Maksimovic, J. Yungtaek, and R. W. Erickson, "Nonlinear-carrier control for high-power-factor boost rectifiers," IEEE Transactions on Power Electronics, vol. 11, pp. 578-584, 1996.
    [9] B. A. Mather, D. Maksimovi, and x, "A Simple Digital Power-Factor Correction Rectifier Controller," IEEE Transactions on Power Electronics, vol. 26, pp. 9-19, 2011.
    [10] A. Prodic, C. Jingquan, D. Maksimovic, and R. W. Erickson, "Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response," IEEE Transactions on Power Electronics, vol. 18, pp. 420-428, 2003.
    [11] A. Prodic, D. Maksimovic, and R. W. Erickson, "Dead-zone digital controllers for improved dynamic response of low harmonic rectifiers," IEEE Transactions on Power Electronics, vol. 21, pp. 173-181, 2006.
    [12] B. A. Mather and D. Maksimovic, "Quantization effects and limit cycling in digitally controlled single-phase PFC rectifiers," in 2008 IEEE Power Electronics Specialists Conference, 2008, pp. 1297-1303.
    [13] B. A. Mather and D. Maksimovic, "Single comparator based A/D converter for output voltage sensing in power factor correction rectifiers," in 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 1331-1338.
    [14] S. Moon, L. Corradini, D. Maksimovi, and x, "Autotuning of Digitally Controlled Boost Power Factor Correction Rectifiers," IEEE Transactions on Power Electronics, vol. 26, pp. 3006-3018, 2011.
    [15] A. Prodic, "Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers," IEEE Transactions on Power Electronics, vol. 22, pp. 1719-1730, 2007.
    [16] K. I. Hwu, H. W. Chen, and Y. T. Yau, "Fully Digitalized Implementation of PFC Rectifier in CCM Without ADC," IEEE Transactions on Power Electronics, vol. 27, pp. 4021-4029, 2012.
    [17] Y. S. Lai, K. M. Ho, and C. Bo-Yuan, "Bandwidth-based analysis and controller design of power factor corrector for universal applications," in Industrial Technology (ICIT), 2012 IEEE International Conference on, 2012, pp. 626-631.
    [18] MARVELL. MARVELL 88EM8040/88EM8041. Digital Power Factor Correction Controller For Flyback [Online]. Available: http://www.marvell.com/power-management/pfc/assets/88EM8040-41-Product-Brief.pdf
    [19] A. Devices. ADP1047. Digital Power Factor Correction Controller With Accurate AC Power [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADP1047_1048.pdf
    [20] P. Mao, S. Xie, A. Xu, and Z. Xu, "Current phase lag issue and the compensation scheme for OCC PFC converter," in Power Electronics and Motion Control Conference, 2009. IPEMC '09. IEEE 6th International, 2009, pp. 1678-1683.
    [21] T. K. Jappe and S. A. Mussa, "Discrete-time one cycle control technique applied in single-phase PFC boost converter," in 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 1555-1560.
    [22] J. H. Chiang, B. D. Liu, and S. M. Chen, "A Simple Implementation of Nonlinear-Carrier Control for Power Factor Correction Rectifier With Variable Slope Ramp on Field-Programmable Gate Array," IEEE Transactions on Industrial Informatics, vol. 9, pp. 1322-1329, 2013.
    [23] B. Mather, B. Ramachandran, and D. Maksimovic, "A Digital PFC Controller without Input Voltage Sensing," in APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, 2007, pp. 198-204.
    [24] J. C. Tsai, C. L. Chen, Y. T. Chen, C. L. Ni, C. Y. Chen, and K. H. Chen, "Perturbation On-Time (POT) Technique in Power Factor Correction (PFC) Controller for Low Total Harmonic Distortion and High Power Factor," IEEE Transactions on Power Electronics, vol. 28, pp. 199-212, 2013.
    [25] C. W. Chang, C. L. Ni, J. C. Tsai, Y. T. Chen, C. Y. Chen, K. H. Chen, et al., "High-PF and ultra-low-THD power factor correction controller by sinusoidal-wave synthesis and optimized THD control," in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), 2013, pp. 917-920.
    [26] S. H. Tang, D. Chen, C. S. Huang, C. Y. Liu, and K. H. Liu, "A new on-time adjustment scheme for the reduction of input current distortion of critical-mode power factor correction boost converters," in Power Electronics Conference (IPEC), 2010 International, 2010, pp. 1717-1724.
    [27] STMicroelectronics. L6562. TRANSITION-MODE PFC CONTROLLER [Online]. Available: http://www.st.com/web/en/resource/technical/document/datasheet/CD00003316.pdf
    [28] Infineon. IR1150. ONE CYCLE CONTROL PFC IC [Online]. Available: http://www.irf.com/product-info/datasheets/data/ir1150.pdf
    [29] Leadtrend. LD7591. Transition-Mode PFC Controller with Fault Condition Protection [Online]. Available: http://www.leadtrend.com.tw/pdf/LD7591-DS-00.pdf
    [30] N. P. Papanikolaou and E. C. Tatakis, "Minimisation of power losses in PFC flyback converters operating in the continuous conduction mode," IEE Proceedings - Electric Power Applications, vol. 149, pp. 283-291, 2002.
    [31] J. J. Lee, J. M. Kwon, E. H. Kim, W. Y. Choi, and B. H. Kwon, "Single-Stage Single-Switch PFC Flyback Converter Using a Synchronous Rectifier," IEEE Transactions on Industrial Electronics, vol. 55, pp. 1352-1365, 2008.
    [32] Linear. LT3798. Isolated No Opto-Coupler Flyback Controller with Active PFC [Online]. Available: http://cds.linear.com/docs/en/datasheet/3798fa.pdf
    [33] Leadtrend. LD7577J. High Voltage Green-Mode PWM Controller with Brown-Out Protection [Online]. Available: http://www.leadtrend.com.tw/pdf/LD7577J-DS-00b.pdf
    [34] Leadtrend. LD7513. Primary Side Quasi-Resonant BJT Controller with CV/CC Operation[Online].Available: http://www.elecinfo.com/upload/community/2014/03/04/1393918617-17913.pdf
    [35] T. Instruments. UCC28019A 8-Pin Continuous Conduction Mode (CCM) PFC Controller[Online].Available: http://www.ti.com.cn/cn/lit/ds/symlink/ucc28019a.pdf
    [36] 電磁干擾規範(EN55022/CISPR22 class B) [Online]. Available: http://support.elmark.com.pl/getac/certyfikaty/A770_A790_CE%20EMI%20Report.pdf
    [37] M. J, x00Fc, hlethaler, H. Uemura, and J. W. Kolar, "Optimal design of EMI filters for single-phase boost PFC circuits," in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 632-638.
    [38] Q. Ji, X. Ruan, L. Xie, and Z. Ye, "Conducted EMI Spectra of Average-Current-Controlled Boost PFC Converters Operating in Both CCM and DCM," IEEE Transactions on Industrial Electronics, vol. 62, pp. 2184-2194, 2015.
    [39] K. M. Smedley and S. Cuk, "One-cycle control of switching converters," in Power Electronics Specialists Conference, 1991. PESC '91 Record., 22nd Annual IEEE, 1991, pp. 888-896.
    [40] L. Zheren, K. M. Smedley, and M. Yunhong, "Time quantity one-cycle control for power factor correctors," in Applied Power Electronics Conference and Exposition, 1996. APEC '96. Conference Proceedings 1996., Eleventh Annual, 1996, pp. 821-827 vol.2.
    [41] J. P. Gegner and C. Q. Lee, "Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode," in Power Electronics Specialists Conference, 1996. PESC '96 Record., 27th Annual IEEE, 1996, pp. 196-202 vol.1.
    [42] R. Brown and M. Soldano, "One cycle control IC simplifies PFC designs," in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., 2005, pp. 825-829 Vol. 2.
    [43] K. C. Chang, K. H. Chen, T. J. Liang, and B. D. Liu, "Design of one-cycle control power factor correction IC with unipolar supply voltage," in 2009 IEEE International Symposium on Circuits and Systems, 2009, pp. 3078-3081.
    [44] H. Zhang and T. Meng, "A Novel Single-Phase Power Factor Corrector with One Cycle Control Technology," in Intelligent Computation Technology and Automation, 2009. ICICTA '09. Second International Conference on, 2009, pp. 961-964.
    [45] A. A. d. M. Bento and E. R. C. d. Silva, "Hybrid One-Cycle Controller for Boost PFC Rectifier," IEEE Transactions on Industry Applications, vol. 45, pp. 268-277, 2009.
    [46] C. Huang, W. m. Lin, and X. j. Guo, "One-Cycle Control of single-phase PFC rectifiers with fast dynamic response and low distortion," in Power Electronics and Motion Control Conference (IPEMC), 2012 7th International, 2012, pp. 1621-1625.
    [47] D. Maksimovic, R. W. Erickson, and Y. Jang, "Non-linear carrier controllers for high power factor rectification," ed: Google Patents, 1999.
    [48] R. W. E. a. D. Maksimović, Fundamental of Power Electronics, 2nd edition, Kluwer Academic Publishers ed., 2001.
    [49] J. Hwang, A. Chee, and K. Wing-Hung, "New universal control methods for power factor correction and DC to DC converter applications," in Applied Power Electronics Conference and Exposition, 1997. APEC '97 Conference Proceedings 1997., Twelfth Annual, 1997, pp. 59-65 vol.1.
    [50] J. Hwang, "Input current shaping technique and low pin count for pfc-pwm boost converter," ed: Google Patents, 1998.
    [51] J. H. Hwang and W. H. Ki, "Input current modulation for power factor correction," ed: Google Patents, 1998.
    [52] R. Zane and D. Maksimovic, "Nonlinear-carrier control for high-power-factor rectifiers based on up-down switching converters," IEEE Transactions on Power Electronics, vol. 13, pp. 213-221, 1998.
    [53] R. Zane and D. Maksimovic, "Frequency scalable non-linear waveform generator for mixed-signal power-factor-correction IC controller," in Custom Integrated Circuits, 1999. Proceedings of the IEEE 1999, 1999, pp. 609-612.
    [54] R. Zane and D. Maksimovic, "A mixed-signal ASIC power-factor-correction (PFC) controller for high frequency switching rectifiers," in Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE, 1999, pp. 117-122 vol.1.
    [55] S. Ben-Yaakov and I. Zeltser, "The dynamics of a PWM boost converter with resistive input," IEEE Transactions on Industrial Electronics, vol. 46, pp. 613-619, 1999.
    [56] M. Chen, A. Mathew, and J. Sun, "Nonlinear Current Control of Single-Phase PFC Converters," IEEE Transactions on Power Electronics, vol. 22, pp. 2187-2194, 2007.
    [57] 王聖銘, “具高功因之固定導通時間交-直流轉換器,” 國立成功大學碩士論文, 2014年1月.
    [58] A. d. Castro, P. Zumel, O. Garcia, T. Riesgo, and J. Uceda, "Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA," IEEE Transactions on Power Electronics, vol. 18, pp. 334-343, 2003.
    [59] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Transactions on Power Electronics, vol. 18, pp. 301-308, 2003.
    [60] P. Hao, D. Maksimovic, A. Prodic, and E. Alarcon, "Modeling of quantization effects in digitally controlled DC-DC converters," in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, pp. 4312-4318 Vol.6.
    [61] S. Jian, "On the zero-crossing distortion in single-phase PFC converters," IEEE Transactions on Power Electronics, vol. 19, pp. 685-692, 2004.
    [62] K. D. Gusseme, D. M. V. d. Sype, A. P. M. V. d. Bossche, and J. A. Melkebeek, "Input-Current Distortion of CCM Boost PFC Converters Operated in DCM," IEEE Transactions on Industrial Electronics, vol. 54, pp. 858-865, 2007.
    [63] V. Boscaino, G. Capponi, G. m. D. Blasi, P. Livreri, and F. Marino, "Modeling and simulation of a digital control design approach for power supply systems," in 2006 IEEE Workshops on Computers in Power Electronics, 2006, pp. 246-249.
    [64] P. Zumel, M. Garc, x00Ed, V. a, L. A, x00E, et al., "Co-simulation PSIM-ModelSim oriented to digitally controlled switching power converters," in 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL), 2010, pp. 1-7.
    [65] A. Thangavelu, M. V. Varghese, and M. V. Vaidyan, "Novel FPGA based controller design platform for DC-DC buck converter using HDL Co-simulator and Xilinx System Generator," in Industrial Electronics and Applications (ISIEA), 2012 IEEE Symposium on, 2012, pp. 270-274.
    [66] M. H. Chan, Y. T. Lin, and Y. Y. Tzou, "Development of a mixed-signal PFC control IC with fast dynamic response," in Power Electronics and Motion Control Conference, 2009. IPEMC '09. IEEE 6th International, 2009, pp. 1708-1712.
    [67] J. C. W. Lam, J. C. Y. Hui, and P. K. Jain, "A Multifunctional Digital Controller for a High-Power-Factor Electronic Ballast Dimmable With Standard Phase-Cut Dimmers," IEEE Transactions on Industry Applications, vol. 50, pp. 2359-2369, 2014.
    [68] A. Device. AD7822 [Online]. Available: http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7822/products/product.html
    [69] N. Semiconductor. PCB Layout Considerations for Switchers [Online]. Available: http://www.download.21dianyuan.com/download.php?id=58351
    [70] 陳育煌, “採用堆疊開關功率級之數位降壓晶片設計,” 國立成功大學碩士論文, 2016年1月.
    [71] H. C. Chen, "Single-Loop Current Sensorless Control for Single-Phase Boost-Type SMR," IEEE Transactions on Power Electronics, vol. 24, pp. 163-171, 2009.
    [72] H. C. Chen, C. C. Lin, and J. Y. Liao, "Modified Single-Loop Current Sensorless Control for Single-Phase Boost-Type SMR With Distorted Input Voltage," IEEE Transactions on Power Electronics, vol. 26, pp. 1322-1328, 2011.
    [73] F. J. Azcondo, A. d. Castro, V. M. Lopez, and O. Garcia, "Power Factor Correction Without Current Sensor Based on Digital Current Rebuilding," IEEE Transactions on Power Electronics, vol. 25, pp. 1527-1536, 2010.
    [74] V. M. Lopez, F. J. Azcondo, A. d. Castro, and R. Zane, "Universal Digital Controller for Boost CCM Power Factor Correction Stages Based on Current Rebuilding Concept," IEEE Transactions on Power Electronics, vol. 29, pp. 3818-3829, 2014.
    [75] J. W. Kim, H. S. Youn, and G. W. Moon, "A Digitally Controlled Critical Mode Boost Power Factor Corrector With Optimized Additional On Time and Reduced Circulating Losses," IEEE Transactions on Power Electronics, vol. 30, pp. 3447-3456, 2015.
    [76] J. W. Kim and G. W. Moon, "Minimizing Effect of Input Filter Capacitor in a Digital Boundary Conduction Mode Power Factor Corrector Based on Time-Domain Analysis," IEEE Transactions on Power Electronics, vol. 31, pp. 3827-3836, 2016.
    [77] W. J. Cha, Y. W. Cho, J. M. Kwon, and B. H. Kwon, "Single Power-Conversion LED Backlight Driving System With High Power Factor Control," Journal of Display Technology, vol. 10, pp. 407-413, 2014.
    [78] iWATT. iw3626. Off-Line Digital Power Controller for LED Driver with High Power-Factor and Low-Ripple Current [Online]. Available: http://download.21dianyuan.com/download.php?id=113763
    [79] iWATT. LED Driver with iW3626-00 (AC input 90-264 VAC, Output 22V 350mA) [Online].Available:http://iwatt.com/wp-content/uploads/2013/07/EBC930_Reference_Design.pdf
    [80] MARVELL. 88EM8080/88EM8081. Digital Flyback PFC Controller For LED Lighting Applications [Online]. Available: http://www.marvell.com.cn/green-technology/led/assets/Marvell-88EM8080-81-LED-IC-Product-Brief.pdf;http://www.marvell.com.cn/green-technology/led/assets/Marvell-88EM8080-81-Data-Sheet.pdf

    下載圖示 校內:2018-07-21公開
    校外:2018-07-21公開
    QR CODE