| 研究生: |
張克昌 Chang, Ke-Chang |
|---|---|
| 論文名稱: |
高雄地區水資源供給之經濟影響分析 The Economic Impact Analysis of Water Supply in Kaohsiung Area |
| 指導教授: |
郭彥廉
Kuo, Yen-Lien |
| 共同指導教授: |
游保杉
Yu, Pao-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 區域投入產出法 、產業關聯效果 、水資源 |
| 外文關鍵詞: | Regional Input and Output Model, Industry Linkage Effects, Water Resource |
| 相關次數: | 點閱:157 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
高雄地區近幾年因為台灣地區降雨分布不均特性以及氣候變遷的影響,而飽受缺水問題,然而,目前缺水的問題則是移轉農業部門的水至生活以及工業部門做使用,來解決日常生活以及工業的用水不足。故,因缺水而導致的經濟損失風險難以想像,缺水也將會大大影響這一個全國產值排名第二城市的產業發展並且造成生活上的不便。也因此,有鑑於缺水的問題以及日後因氣候變遷所帶來水資源的挑戰,本研究提出了三種不同在未來可行的水源設施興建方案:再生水廠、海水淡化廠以及高屏大湖第一期工程,用以建造來提升當地的供水可靠度以及穩定產業發展,並且分析此三種不同水資源設施所帶來之建造上的經濟效益、該不同設施所供給之水資源對於產業產出之經濟效益,以及該不同水源設施建造後,因而減少農業用水的移轉,所對於農業上的產出經濟效益,並且將分析結果提供給相關決策者參考,以利後續決策者在政策上的執行與規劃。
本研究首先採用主計處之民國100年國產品交易表52部門作為投入產出法之分析基礎,並且為了量化各個研究範疇對於生活部門的經濟效益,因而在表中增加了第53個部門-生活部門。由於研究地區在高雄,因此採用區位商數法(Location Quotients Method, LQ)來建立高雄地區的需求面以及供給面投入產出模型,並利用需求面投入產出模型模擬三種水源設施建造上對於高雄地區整體產業的經濟效益;利用供給面投入產出模型模擬三種水源設施所供給之水資源的經濟效益,以及因為該水源設施的建造而減少農業用水的依賴,所對於農業部門的經濟效益分析。
分析的結果顯示:(1).在設施興建中至興建完畢的期間上,再生水廠的興建可為高雄地區創造年約新台幣2,235.6百萬元之產出效果、771.86百萬元之所得效果以及900個工作機會;海水淡化廠的興建則可為高雄地區創造年約新台幣7,423.99百萬元之產出效果、2,563.21百萬元之所得效果以及2,989個工作機會;然而,高屏大湖第一期工程則可為高雄地區創造年約新台幣7,852.57百萬元之產出效果、2,711.18百萬元之所得效果以及3,162個工作機會。(2). 在設施所供給之水資源效益上,再生水廠所供給之再生水可為高雄地區帶來年約新台幣1,776.71百萬元之產出效果;然而海水淡化廠以及高屏大湖第一期工程所供給之水資源經濟效益相同,均可為高雄地區帶來年約新台幣2,731.1百萬元之產出效果。 (3). 因該不同水源設施之興建,而減少農業用水轉移之效益分析結果:因再生水的興建,而增加的再生水量將回歸等量的農業用水至農業部門使用,估計可增加當地農業新台幣92.96百萬元之產出;然而,因海水淡化廠以及高屏大湖第一期工程的興建,而增加的水資源量將回歸等量的農業用水至農業部門使用之經濟效益相同,估計可增加當地農業新台幣203.62百萬元之產出。
在此三種水源設施之經濟效益分析中,雖然海水淡化廠以及高屏大湖第一期工程在水資源以及穩定農業發展上的經濟效益均相同,但是由於高屏大湖第一期工程在設施的建造上之經濟效益為三者中最大、且其每單位製水成本均小於海水淡化廠,因此在成本以及經濟效益的比較考量上,建議以高屏大湖第一期工程作為政策執行上的優先考量。
Abstract
Kaohsiung area, the second biggest city in Taiwan has been suffering from water shortage for a long time due to uneven rainfall temporal distribution. The water source for Kaohsiung area mainly comes from the rainy season which begins from May to September, the rainfall of that period accounts nearly 90% of annual rainfall. However, it rarely rains in dry season which begins from October to April, this uneven rainfall temporal distribution makes water retention a tough task. A research project from Southern Region Water Resource Office indicates that the daily average water supply cannot meet the daily water demand by the amount of 265,100 cubic meters, hence the agricultural water is inevitably transferred to industry and residential sector to fill up the gap. However it is not always a good way to solve the problem, although the industry and residential sector get benefits from that transfer, it shall pose potential impact to agriculture sector. To meet the water demand of Kaohsiung area and enhance the reliability of water supply in the future, thus, the local government officials have been seeking to construct water resource facility to save and retain water in Kaohsiung area.
In the above point of view, this study used regional input and output (I-O) model which were established by location quotient method to evaluate the economic effects of the three feasible water resource facilities: reclaimed water plant, seawater desalination plant and Gaoping lake-phase one and provide the information to decision makers. The evaluations include the economic effects of facility construction and the amount of water supplied by each water resource facility, and also the economic effects of transferred agricultural water. However, most of I-O studies on water resource-related are focused on water shortage, different from those studies, this study created a residential sector in I-O table and estimated the economic effects of increased water resource in industry and residential sectors.
The results revealed that the construction of reclaimed water plant would create 2,235.6 million NTD output effect, 771.86 million NTD income effect and 900 job opportunities; the construction of seawater desalination plant would create 7,423.99 million NTD output effect, 2,563.21 million NTD income effect and 2,989 job opportunities; while the construction of Gaoping lake-phase one would create 7,852.57 million NTD output effect, 2,711.18 million NTD income effect and 3,162 job opportunities annually to Kaohsiung area during their construction period. As for the economic effects of water resource, the increase of 16.425 million cubic meters of reclaimed water use a year in industry sector would create 1,776.71 million NTD output effect annually to Kaohsiung area, moreover, the increase of 36.5 million cubic meters of water resource from seawater desalination plant or Gaoping lake-phase one a year in industry and residential sectors would create 2,731.1 million NTD output effect annually to Kaohsiung area.
Among the three different water resource facilities, Gaoping lake-phase one would be the better choice to be constructed to enhance the reliability of water supply and also to stabilize the development of agriculture sector in Kaohsiung area due to its relative low unit cost of water and the relative largest output effect, income effect and employment effect on facility construction.
References
1. Ayanshola, A.M., Sule, B.F. and Salami, A.W. (2013). EVALUATION OF WILLINGNESS TO PAY FOR RELIABLE AND SUSTAINABLE HOUSEHOLD WATER USE IN ILORIN, NIGERIA. Ethiopian Journal of Environmental Studies and Management. Vol. 6.
2. Breaden, J. P. (1973). The Generation of Flood Damage Time Sequences, University of Kentucky Water Resources Institute Paper, 32.
3. Butcher G.V., Ford Stuart. (2009). Modeling the Regional Economic Impacts of the 2007/08 Drought: Results and Lessons. New Zealand Agricultural and Resource Economics Society (inc.)
4. Chang, T.-K., Yao P.-H., Shyu G.-S., Cheng B.-Y., Chang Y.-H. (2013). The Water Footprints of Rice in Taiwan. Journal of Taiwan Agricultural Engineering, Vol. 59, No. 3, September 2013
5. Chiueh, Ya.-Wen, Huang, C.-C. (2015). The Willingness to Pay by Industrial Sectors for Agricultural Water Transfer during Drought Periods in Taiwan. Environment and Natural Resources Research/Vol. 5/No. 1.
6. Chiueh, Ya.-Wen., Chen, H.-H. and Ding, C.-F. (2011). The Willingness to Pay of Industrial Water Users for Reclaimed Water in Taiwan, Current Issues of Water Management, Dr. Uli Uhlig (Ed.), ISBN: 978-953-307-413-9, InTech, Available from: http://www.intechopen.com/books/current-issues-of-watermanagement/the-willingness-to-pay-of-industrial-water-users-for-reclaimed-water-in-taiwan.
7. Chiueh, Ya-wen and Zheng Chang-Chi. (2007). “The Evaluation of Compensation for Transferring Irrigation Water to Alternative Uses in Tao-Yuan Area”. Journal of Taiwan Agricultural Engineering, 53(4), 35-43.
8. Chiueh, Ya-wen. (2007). “Market Failure or Government Failure? Market Analysis of Transferring Agricultural Water for Alternative Uses in Taiwan”. Journal of Humanities and Social Sciences, vol4, 309-338。
9. Cochrane, H. (1997). Economic Impacts of a Midwestern Earthquake. NCEER Bulletin 11(1): 1-5.
10. Elnagheeb, A.H., Jordan, J. L. (1997). Estimating the Willing-to-Pat for Water in Georgia. Journal of Agribusiness 15-1. 103-120.
11. González, Jaume Freire (2011). Assessing the Macroeconomic Impact of Water Supply Restrictions Through an Input–Output Analysis. Water Resour Manage 25:2335–2347.
12. Grigg, N. S. and Helweg O. J.. (1975). State-of-the Art of Estimating Flood Damage in Urban Areas. Journal of the American Water Resources Association, 11, 379-390.
13. Haq, M., Mustafa, U. and Ahmad, I. (2007). Household’s willingness to pay for safe and drinking water: case study of Abbottabad District, The Pakistan Development Review 46 (4) part 11,2-10.
14. Hayes, M. J., Svoboda, M. D., Knutson, C. L. & Wilhite, D. A. (2004) Estimating the economic impacts of drought
15. Hirschman, A. O. (1958).The Strategy of Economic Development. New Haven: Yale University Press,50-75.
16. Howitt, R. E., MacEwan, D. & Medellín- Azuara, J. (2009). Economic Impacts of Reductions in Delta Exports on Central Valley Agriculture. Agricultural and Resource Economics Update 12(3): 1-4.
17. Hsiao, M.-T. (2010). An Economic Analysis on Sun Moon Lake Develops Tourism Gaming:The Application of Input-Output Model. Chaoyang University of Technology, Department of Leisure Services Management. Master Thesis.
18. Hung, H.-C. (2005). The Relationship between Ecotourism and Local Economic Development: An Empirical Study of Cigu Country in Taiwan. National Chi Nan University, Department of Economics. Master Thesis.
19. Kondo, Kumiko. (2005). Economic analysis of water resources in Japan: using factor decomposition analysis based on input-output tables. Environmental Economics and Policy Studies. 7:109-129
20. Lee, K.-C., Lin, L.-C. (2000). A Green Functions Input-Output Analysis on Forestry Sector of Nan-Tou County. Quarterly Journal of Chinese Forestry 33:4 page 513-527
21. Lee, Y.-Y. (2002). A study on the economic impact by whale-watching activity in the east coast of Taiwan. National Chung Hsing University. Department of Economics. Master Thesis.
22. Lin, H.-C., Kuo, Y.- L., Shaw, D., Chang, M.- C., Kao, T.- M. (2012). Regional economic impact analysis of earthquakes in northern Taiwan and its implications for disaster reduction policies. Nat Hazards (2012) 61:603–620
23. Lin,Y.-J., The Economic Losses of Water Shortage in Taoyuan Area. Taiwan Association of Hydraulic Engineer Sicence 1987 (2007)
24. Marglin, S. A. (1962). Objectives of water resources development: A general statement, (Chapter 2 of Arthur Maass,et al.) Design of water resource systems. Cambridge: Harvard University Press.
25. Morrison, W. I., Smith, P. (1974),Nosurvey Input-Output Techniques at the Small Area Level:An Evaluation, Journal of Regional Science, 14 (1),pp1-14.
26. Mubako Stanley, Lahiri Sajal, Lant Christopher. (2013). Input–output analysis of virtual water transfers: Case study of California and Illinois. Ecological Economics 93, page 230–238
27. Okuyama Y (2007) Economic modeling for disaster impact analysis: past, present, and future. Econ Syst Res 19(2):115–124
28. Parker, D. J., Green, C. H., and Thompson, P. M. (1987). Urban Flood Protection Benefits: A Project Appraisal Guide, Aldershot: Gower Technical Press.
29. Riebsame, W. E., Changnon, S. A. J. & Karl, T. R. (1991). Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987–89 Drought. Boulder, Colorado: Westview Press
30. Rogerson, C. (1996), Willingness to pay for water: the international debates, Water SA, 22(4), 73-80.
31. Ronald E. Miller and Peter D. Blair (2009). Input-Output Analysis Foundations and Extensions SECOND EDITION.
32. Rose, A. & Liao, S. Y. (2005). Modeling regional economic resilience to disasters: a computable general equilibrium analysis of water service disruptions. Journal of Regional Science 45(1): 75-772.
33. Rose. A. (2004). Economic principles, Issues and Research Priorities of Natura Hazard Loss Estimation. In: Modeling of spatial economic impacts of natural hazards, eds. Y. Okuyam & S. Chang, pp. 13-36. Greenwich: JAI Press.
34. Ross, T. & Lott, N. (2003). A Climatology of 1980-2003 Extreme Weather and Climate Events. US Department of Commerce NOAA/ NESDIS National Climatic Data Center
35. Santos, Joost R., Pagsuyoin, Sheree T., Herrera, Lucia C., Tan, Raymond R., Yu, Krista D. (2014) Analysis of drought risk management strategies using dynamic inoperability input–output modeling and event tree analysis. Environ Syst Decis
36. Sawyer C H, Miller R E. (1983). “Experiments in regionalization of a national input – output table” Environment and Planning. A 15(11) 1501 – 1520
37. Schaffer, W., and Chu, K. (1969). “Nonsurvey Techniques for Constructing Regional Interindustry Models.” Papers in Regional Science 23(1): 83-104
38. Schwartz J. Brad, Johnson Ronald W. (1992). MAXIMIZING THE ECONOMIC IMPACT OF URBAN WATER SUPPLY AND SANITATION INVESTMENTS. Prepared for the Office of Health, Bureau for Research and Development, U.S. Agency for International Development, under WASH Task No.154.
39. Shaw Daigee, Huang Hsing-Hsiang, Horng Ming-Jame, Lu Mong-Ming and Lo Yi-Lun. (2007). A PROBABILISTIC FLOOD RISK ANALYSIS OF HOUSEHOLD LOSSES IN THE DANSHUEI RIVER BASIN. National Science Council (NSC 91-2625-Z-001-002、 NSC 92-2625-Z-001-002)
40. Sun, T.- P. (2000). Industry Effects of Taiwan Intelligent Transportation Systems Development. National Dong Hwa University. Department of Economics. Master Thesis.
41. Vela´zquez, Esther. (2006). An input–output model of water consumption: Analysing intersectoral water relationships in Andalusia. Ecological Economics 56, page 226–240
42. Ward F. A., Michelsen Ari. (2002). The economic value of water in agriculture: concepts and policy applications. Water Policy 4 (2002) 423–446
43. Ward, F.A. and Michelsen, A. (2002). The economic value of water in Agriculture: concepts and policy applications. Water Policy, 4: 423-446.
44. Whittington, D., Lauria, D. and Mu, X. (1991), A case study of water vending and willingness to pay in Onitsha, World Development, 19(2/3), 179-198.
45. Whittington, D., Lauria, D., Okun, D., and Mu, X. (1987), An assessment of water vending activities in developing countries, Working Papers No 185 Arlington,VA, Washington.
46. Wu T.-C., Pan C.-M. (2004). Estimating Visitor Expenditures and Economic Output Effects-A Case Study of the International Children’s Folk Art Festival. Journal of Outdoor Recreation Study. 17:1. ISSN:1012-5434.
47. Xiang R.-M., Meng Y.-J. (2011). Expended Research Input and Output Model. Southwestern University of Finance and Economic Press.
48. Ya Ding, Michael J Hayes, Melissa Widhalm. (2010). Measuring Economic Impacts of Drought: A Review and Discussion. Papers in Natural Resources. Paper 196.
Research Project
1. Environmental & Infrastructural Technologies, Inc.(EITCO). (2007). Planning and Investigation for a Seawater Desalination Plant in Tainan. Water Resources Planning Institute, WRA.
2. NCKU Research & Development Foundation. (2015). Risk Assessment and Economic Analysis for Water Resources Supply and Demand in Kaohsiung Area. Southern Region Water Resource Office, Taiwan.