簡易檢索 / 詳目顯示

研究生: 倪子綺
Rizkasari, Ana
論文名稱: 地形座標系統上深度平均模型於火山碎屑流之應用 : 以2010年印尼Merapi火山噴發為例
An application of a depth-averaged model in terrain-fitted coordinate system for pyroclastic flows: a case study of Merapi Volcano eruption, 2010, Indonesia.
指導教授: 朱宏杰
Chu, Hone-Jay
共同指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 64
中文關鍵詞: 深度平均模型湧升子地形動量校正因子2010年Merapi火山爆發數值模擬
外文關鍵詞: Depth-averaged models, Sub-topography, Upwelling, Momentum correction factor, Eruption of Mt. Merapi 2010, Numerical simulation
相關次數: 點閱:159下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們應用於地形座標系統所建立的深度平均動力學模型來模擬2010年Merapi火山噴發時的礫石流動,透過流量、深度分佈和流速等流場的重要資訊來探討防災、減災等災害管理相關議題。在數值計算中,地形的資料仰賴現有的數位地形地圖(DEM)。數位地形地圖的建立乃依據現實的地形,難免會有不可避免的劇烈崎嶇起伏,以至於無法直接適用於地形座標。妥協的方法就是將劇烈崎嶇起伏的地形平滑化(濾波法),然而平滑化之後也改變了真實地形。為了解決這個問題,我們在平滑化的曲面地形上建立子地形(sub-topography)來重塑真實的地形。在情境模擬的部分,我們透過引入火山口的礫石湧出量來控制數值模擬中的礫石分佈與總量。此外,論文中也進一步探討理論模型中的摩擦係數和動量校正因子對於礫石流動與動態分部的影響。藉由過往的流變分析研究,歷史記錄和衛星圖像驗證理論,獲得非常好的相關性。

    In this thesis, a depth-averaged model in a terrain-fitted coordinate system is applied to simulate the pyroclastic flows during the eruption of Mt. Merapi in 2010. Through the numerical simulation we are able to obtain more precise flow information, such as the local flow fluxes, the distributions of flow depth and velocity as well as the deposits, for the goal of hazard mitigation or hazard management. In the numerical computation, the terrain-fitted coordinate system is based on the digital elevation model (DEM). Because of the fact that the real topography might consists of highly varying elevation, e.g. obstacles or cliffs, which is not applicable in the terrain-fitted coordinate, a compromised treatment is to smooth (filter) the topographic surface. However, the employment of the smooth basal surface might introduce deviation because of the lack of the sudden change of topography. In this study, we introduce the so-call “sub-topography” over the smoothed topographic surface, to mimic the real topography.
    In the simulations, we also introduce the “Upwelling” to mimic the exploded material, especially by the multiple eruptions, so that we may have a more reasonable spreading/supply of flow material. In addition, we also investigate the impacts of the key parameters on the flow behaviors, such as the friction coefficient, momentum correction factor and the amount of upwelling. Besides, the Voellmy rheology has also been taken into account. The results of these tests were compared to theoretical findings of rheological analysis presented in previous studies as well as historical records, and satellite images to figure out the representative values of the relevant parameters.

    CONTENTS ABSTRACT (CHINESE) i ABSTRACT ii ACKNOWLEDGEMENTS iii CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Pyroclastic Material 3 1.3 Literature Review 4 1.4 Objective 6 CHAPTER 2 MODEL EQUATIONS 8 2.1 Coordinate System 8 2.2 Sub-topography 10 2.3 Model Equations 12 CHAPTER 3 SCENARIO SIMULATION AND PARAMETER STUDY 16 3.1 Resolution of DEM data 17 3.2 Sub-topography 20 3.2.1 Flow Depth 20 3.2.2 Flow Velocity 25 3.3 Upwelling 28 3.4 Friction Coefficient 33 3.4.1 Flow Depth 34 3.4.2 Flow Velocity 39 3.5 Momentum Correction Factor ϖ_(||) 41 3.6 Digital Elevation Model (DEM) Feature due to Sinks 45 3.7 Measurement and Numerical Simulation 48 CHAPTER 4 CONCLUDING REMARKS 56 References 58 APPENDIX 62

    1. BGVN, 2011. Bulletin of the Global Volcanism Network. Smithsonian Institution, Washington, DC , p. 36–1.
    2. Bouchut, F. & Westdickenberg, M., 2004. Gravity driven shallow water models for arbitrary topography. Commun.Math.Sci, pp. 2, 359–389.
    3. Charbonnier, S. J. et al., 2013. Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations. Journal of Volcanology and Geothermal Research, Volume 261, pp. 295-315.
    4. Charbonnier, S. J. & Gertisser, R., 2009. Numerical simulations of block-and-ash flows using the Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia. Bull Volcanol, pp. 71, 953–959.
    5. Constantinescu, R., Thouret, J. & Irimus, I., 2011. Computer Modeling as Tool for Volcanic Hazards Assessment: an Example of Pyroclastic Flow Modeling at El Misti Volcano, Southern Peru. Geographia Technica, pp. 2, 1-14.
    6. Cronin, S. et al., 2013. Insights into the October–November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits. Journal of Volcanology and Geothermal Research, pp. 261, 244-259.
    7. Fisher, P. F., 1991. First experiments in viewshed uncertainty: the accuracy of the viewshed area. Photogramm. Eng. Rem. S, pp. 57, 1321-1327.
    8. Goodchild, M., 1980. Algorthm 9: Simulation of autocorrelation for aggregate data. Environ. Plann. A, pp. 12, 1073-1081.
    9. Gray, J. N., Tai, Y. C. & Noelle, S., 2003. Shock waves, dead zones and particle-free regions in rapid granular free surface flows. J. Fluid Mech., pp. 491, 161–181.
    10. Gray, J., Wieland, M. & Hutter, K., 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London. A, pp. 455, 1841–1874.
    11. Greve, R., Koch, T. & Hutter, K., 1994. Unconfined Flow of Granular Avalanches along a Partly Curved Surface. I. Theory. Proceedings: Mathematical and Physical Sciences, Volume 445, p. 399–413.
    12. Hidayati, S., Surono & Subandriyo, 2009-2012. MIA-VITA Project. [Online]
    Available at: http://miavita.brgm.fr/pressroom/Pages/ayearafterthe2010Merapieruption.aspx
    [Accessed 14 12 2016].
    13. Hui, W. H., 2007. The unified coordinate system in computational fluid dynamics. Commun. Comput. Phys., pp. 2, 577–610.
    14. Hungr, O. & Morgenstern, N., 1989. Experiments on the flow behaviour of granular flow at high velocity in an open channel. Geotechnique, p. 34.
    15. Hutter, K. & Baillifard, O., 2011. A continuum formulation of lava flows from fluid ejection to solid deposition. In: Hutter, K., Wu, T.T., Shu, Y.Ch. (eds). From Waves in Complex System to Dynamics of Generalized Continua. Word Scientific, Singapore, pp. 219-283.
    16. Hutter, K., Wang, Y. & Pudasaini, S., 2005. The Savage–Hutter avalanche model: how far can it be pushed?. Phil. Trans. R. Soc. A, Volume 363, p. 1507–1528.
    17. Itoh, H., Takahama, J., Takahashi, M. & Miyamoto, K., 2000. Hazard estimation of the possible pyroclastic flow disasters using numerical simulation related to the 1994 activity at Merapi Volcano. Journal of Volcanology and Geothermal Research , Volume 100, p. 503–516.
    18. Komorowski, J. C. et al., 2013. Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents. Journal of Volcanology and Geothermal Research, pp. 261, 260-294.
    19. Kuo, C. Y. et al., 2011. The landslide stage of the Hsiaolin catastrophe: Simulation and validation. Journal of Geophysical Research, Volume 116, F04007, p. doi:10.1029/2010JF001921.
    20. Lee, S. K., Lee , C. W. & Lee, S., 2015. A comparison of the Landsat image and LAHARZ-simulated lahar inundation hazard zone by the 2010 Merapi eruption. Bull Volcanol, p. 77: 46.
    21. Liang, S., Li, X. & Wang, J., 2012. Advanced Remote Sensing: Terrestrial Information Extraction and Applications. s.l.:Academic Press; 1 edition.
    22. Lindsay, J. B. & Creed, I. F., 2006. Distinguishing actual and artefact depressions in digital elevation data. Comput. Geosci., pp. 32, 1192-1204.
    23. Liu, Y., Shu, C. W., Tadmor , E. & Zhang, M., 2007. Non-oscillatory hierarchical reconstruction for central and finite volume schemes. Commun. Comput. Phys, pp. 2, 933–963.
    24. Lube, G. et al., 2007. Flow and deposition of pyroclastic granular flows: a type example from the 1975 Ngauruhoe eruption, New Zealand. Journal of Volcanology and Geothermal Research, pp. 161, 165–186.
    25. Luca, I., Hutter, K., Tai, Y. C. & Kuo, C. Y., 2009. A hierarchy of avalanche models on arbitrary topography. Acta Mechanica, Volume 205.1- 4 , pp. 121-149.
    26. Luca, I., Tai, Y. C. & Kuo, C. Y., 2016. Shallow Geophysical Mass Flows down Arbitrary Topography : Model Equations in Topography-fitted Coordinates, Numerical Simulation and Back-calculations of Disastrous Events. 1st ed. s.l.:Springer.
    27. Miyamoto, K., 2016. An Attempt of Pyroclas2c Flow Hazard Mapping by using a Data Base of Numerical Simula2on Results. Kyoto, Japan, ANDF (International Debris-Flow Workshop) and MSD (International Workshop of Multimodal Sediment Disasters).
    28. Murcia, H. F., Sheridan, M. F., Macias, J. L. & Cortes, G. P., 2010. TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: Hazard implications. Journal of South American Earth Sciences, 29(2), pp. 161-170.
    29. Nessyahu. H. & Tadmor. E., 1990. Non-oscillatory Central Differencing for Hyperbolic Conservation Laws. Computational Physics, pp. 87, 2, 408-463.
    30. Pitman, E. B. et al., 2003. Computing granular avalanches and landslides. Phys Fluids, Volume 15, pp. 3638-3646.
    31. Pudasaini, S. P. & Hutter, K., 2003. Rapid shear flows of dry granular masses down curved and twisted channels. Journal of Fluid Mechanics, Volume 495, pp. 192-208.
    32. Pudasaini, S. P. & Kroener, C., 2008. Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. PHYSICAL REVIEW E, pp. 78, 041308.
    33. Rericha, E. C., Bizon, C., Shattuck, M. D. & Swinney, H. L., 2002. Shocks in supersonic sand. Phys. Rev. Lett, pp. 88, 014302-1–014302-4.
    34. Savage, S. B. & Hutter, K., 1989. The motion of finite mass of granular material down a rough incline. Journal of Fluid Mechanics, Volume 199, pp. 177-215.
    35. Savage, S. B. & Hutter, K., 1991. The dynamics of avalanches of granular materials from initiation to runout. Part I : Analysis. Acta Mechanica, Volume 86, pp. 201-223.
    36. Tai, C. Y., Noelle, S., Gray, J. N. & Hutter, K., 2002. Shock-capturing and front tracking methods for granular avalanches. J. Comput. Phys, pp. 175, 269–301.
    37. Tai, Y. C., Kuo, C. Y. & Hui, W. H., 2012. An alternative depth depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. Geophysical & Astrophysical Fluid Dynamics, pp. 106:6 , 596-629.
    38. Tai, Y. C. & Lin, Y. C., 2008. A focused view of the behavior of granular flows down a confined inclined chute into the horizontal run-out zone. Phys. Fluids, Volume 20, pp. 123302-1–123302-12.
    39. Wang, Y., Pudasaini, S. P. & Hutter, K., 2004. The Savage-Hutter theory: a system of partial differential equations for avalanche flows of snow, debris and mud. J. App. Math. Mech., pp. 84, 507–527.
    40. Wechsler, S. P., 2007. Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrol. Earth Syst. Sci., pp. 11, 1481-1500.
    41. Widiwijayanti, C., Voight, B., Hidayat, D. & Schilling, S. P., 2008. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges. Bull Volcano, 71(6), pp. 687-703.
    42. Wise, S., 1998. The Effect of GIS Interpolation Errors on the Use of Digital Elevation Models in Geomorphology, in: Landform Monitoring, Modelling and Analysis, s, edited by: Lane, S. N., Richards, K. S., and Chandler, J. H., John Wiley and Sons. p. 300.
    43. Yamashita, S. & Miyamoto, K., 1991. Numerical simulation method of debris movements with a volcanic eruption. s.l., apan–US workshop on Snow avalanche, Debris flow Prediction and Control.
    44. Zimmer, M. & Erzinger, J., 2003. Geochemical Monitoring on Merapi Volcano, Indonesia. In: s.l.: - In: Zschau, J., Küppers, A. (Eds.), Early warning systems for natural disaster reduction, Springer-Verlag, p. 511—514.

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE