| 研究生: |
高聖凱 Kao, Sheng-Kai |
|---|---|
| 論文名稱: |
多階層換流器電容性與電感性負載探討 Study on Capacitive and Inductive Load of Multilevel Inverter |
| 指導教授: |
陳建富
Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 多階層換流器 、電容性與電感性負載分析 |
| 外文關鍵詞: | multilevel inverter, capacitive and inductive load analysis |
| 相關次數: | 點閱:131 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究多階層換流器在電容性與電感性負載時電路的特性。當多階層換流器的階層大於三階且負載為電容性或電感性時,在開關滯怠時間內有些多階換流器架構會無法由原預期的路徑續流,使其被迫流經輸入電源端而造成電壓階層的變換。本論文回顧許多既有架構,探討該問題是否存在這些架構中。回顧後將有電流路徑續流問題的架構依解決方法分類,而本論文著重在其中一個解決方法進行探討。最後實作一五階換流器,其規格為輸入電壓為400V,dc,輸出電壓220Vrms,ac 輸出視在功率3.75 kVA,來驗證此問題的存在,並根據所提出的解決方法來改善此現象,並對改善前與改善後的特性做比較。
This thesis mainly studies on the capacitive load and inductive load characteristic of multilevel inverter. When load is capacitive or inductive, some topologies are not able to provide the expected current path during switching dead time. Therefore, the current is forced to flow through the input source and results in voltage level change. This thesis reviews some existing topologies, checking whether there is current path problem or not. After review, these topologies with current path problem will be sorted by their solution to the problem. This thesis focuses on one of the solutions to study. Finally, a five-level multilevel inverter, whose input voltage is 400 V,dc, output voltage is 220Vrms,ac and output apparent power is 3.75 kVA, is implemented to verify that the problem exists. The solution presented is also implemented to improve the characteristic of the circuit when load is capacitive or inductive. A comparison of the characteristics before and after the solution is implemented and is presented to show the difference.
[1] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Industry Applications, vol.41, no. 5, pp. 1292 - 1306 Sept./Oct. 2005.
[2] S. Jain and V. Agarwal, “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electronics, vol. 22, no. 5, pp. 1928 - 1940 Sept. 2007.
[3] R. Gonzalez, Gubia, Eugenio, J. Lopez, and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Industrial Electronics, vol.55, no. 7, pp. 2694 - 2702 July 2008.
[4] W. Li and X. He, “Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications,” IEEE Trans. Industrial Electronics, vol. 58, no. 4, pp. 1239 - 1250 Apr. 2011.
[5] H. Xiao and S. Xie, “Transformerless split-inductor neutral point clamped three-level pv grid-connected inverter,” IEEE Trans. Power Electronics, vol. 27, no. 4, pp.1799 - 1808, Apr. 2012.
[6] Y. Huang, M. Shen, F.Z. Peng, and J. Wang, “Z-source inverter for residential photovoltaic systems,” IEEE Trans. Power Electronics, vol. 21, no. 6, pp. 1776 - 1782 Nov. 2006.
[7] N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-phase seven-level grid-connected inverter for photovoltaic system,” IEEE Trans. Industrial Electronics, vol. 58, no. 6, pp. 2435 - 2443, June 2011.
[8] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Industrial Electronics, vol. 54, no. 6, pp.2930 - 2945 Dec. 2007.
[9] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Trans. Industrial Electronics, vol. 49, no. 4, pp. 724 - 738, Aug. 2002.
[10] F. Z. Peng, W. Qian, and D. Cao, “Recent advances in multilevel converter/Inverter topologies and applications,” International Power Electronics Conference (IPEC), pp. 492 - 501, 2010.
[11] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” Industrial Electronics Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008.
[12] 蔡佳原,“單相新型多階層換流器研製”,國立成功大學電機工程研究所碩士論文,中華民國101年。
[13] M. Marchesoni and P. Tensa, “Diode-clamped multilevel converters: a practicable way to balance dc-link voltages,” IEEE Trans. Industrial Electronics, vol. 49, no. 4, pp. 752 - 765, Aug. 2002.
[14] X. Yuan and I. Barbi, “Fundamentals of a new diode clamping multilevel inverter,” IEEE Trans. Industrial Electronics, vol. 15, no. 4, pp.711 - 718, July 2000.
[15] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “Asymmetric carrier technique of CRPWM for voltage balance method of flying-capacitor multilevel inverter,” IEEE Trans. Industrial Electronics, vol. 52, no. 3, pp. 879-888, June 2005.
[16] M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, “Active capacitor voltage balancing in single-phase flying-capacitor multilevel power converters,” IEEE Trans. Industrial Electronics, vol. 59, no.2, pp.769-778, Feb. 2012.
[17] P. Lezana, J. Rodriguez, and D. A. Oyarzun, “Cascaded multilevel inverter with regeneration capability and reduced number of switches,” IEEE Trans. Industrial Electronics, vol. 55, no. 3, pp. 1059 - 1066, Mar. 2008.
[18] Y. Hinago and H. Koizumi, “A switched-capacitor inverter using series/parallel conversion with inductive load,” IEEE Trans. Industrial Electronics, vol. 59, no. 2, pp.878 - 887, Feb. 2012.
[19] S. J. Park, F. S. Kang, M. H. Lee, and C.U. Kim, “A new single-phase five-level pwm inverter employing a deadbeat control scheme,” IEEE Trans. Power Electronics, vol. 18, no. 3, pp.831 - 843, May 2003.
[20] J. C. Wu, M. J. He and H. L. Jou, “New five-level inverter-based grid-connected power conversion interface,” IET Power Electronics, vol. 6, no. 7, pp. 1239 - 1247, Apr. 2013.
[21] G. Buticchi, E. Lorenzani, and G. Franceschini, “A five-level single-phase grid-connected converter for renewable distributed systems,” IEEE Trans. Industrial Electronics, vol. 60, no. 3, pp. 906 - 918, Mar. 2013.
[22] J. M. Shen, H. L. Jou, J. C. Wu, and K. D. Wu, “Five-level inverter for renewable power generation system,” IEEE Trans. Energy Conversion, vol. 28, no. 2, pp. 257 - 266, June 2013.