簡易檢索 / 詳目顯示

研究生: 周閔翔
Shang, Chou Ming
論文名稱: 顆粒流體積濃度與速度場之量測
The measurement of volume fraction in granular flows and the associated velocity distribution
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 濃度量測粒子影像測速法μ(I)-rheology顆粒流修正係數
外文關鍵詞: volume fraction, digital particle image velocimetry (DPIV), μ(I)-rheology, granular flow, correction factors
相關次數: 點閱:116下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生活環境中的致災災害流體如土石流、雪崩、火山泥漿,一般將其簡化為顆粒流問題,而探討顆粒材料的運動行為,顆粒速度與體積濃度的描述則扮演關鍵性的角色。利用透明壓克力渠道進行顆粒流實驗,以兩個不同環境流體空氣與水分別討論穩態下乾顆粒與濕顆粒的運動行為,利用Sarno et al. (2016)提出的光學方法量測體積濃度,同時利用粒子影像測速法(digital particle image velocimetry,DPIV )量測顆粒速度。量測過程發現在底床附近當速度趨近於零時,濃度開始有振盪情形發生,乾顆粒部份發現在表面速度與濃度皆為線性分佈,另外透過μ(I)-rheology中採用的慣性數I (inertia number)來描述顆粒運動情形。由於慣性數I受制於體積濃度c,利用實驗觀察I與c發現兩者之間呈現指數關係。除了乾顆粒流,在水與顆粒的混合流體部份我們考慮平衡坡度修正底床傾角,利用Egashira et al. (1997) 水砂混合流模型、Tai et al. (2016)速度與濃度線性假設以及實驗量測的結果,探討Tai and Shen (2014)中所提出水砂混合流深度積分下所產生的四個修正係數的必要性。

    The hazardous flows, such as debris flows, snow avalanches or the lava flows during volcano eruptions, sometimes are mimicked by granular flows, because of its complex composition. The distributions of volume fraction and velocity play crucial roles In investigating the dynamics of the granular flows. In the present study we performed experiments in transparent channels of acrylic plastic, where the dry granular flows and water-glass beads mixture are taken into account. Combining the optical method and the digital particle image velocimetry, we are able to measure the volume fraction and velocity distribution during the flow motion. It is notable that both of the distributions of volume fraction and velocity are approximately linear, and the measured volume fraction exhibits oscillating when the particle velocity is close to zero. In addition, since the μ(I)-rheology employed inertia number is pressure- dependent, it is concluded that its value and the volume fraction are related by an exponential formula. With the measured velocity and volume fraction, we calculated the four correction factors for sediment-water mixture. The assumption of piecewise linear distribution and sediment-water mixture model may provide comparable values to these correction factors, whose values are important in describing non-uniform flow.

    摘要 I 誌謝 XI 目錄 XII 圖目錄 XIV 表目錄 XVIII 參數表 XIX 第1章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1乾顆粒運動行為 2 1.2.2濕顆粒運動行為 6 1.2.3濃度量測方法 15 1.2.4速度量測方法 18 1.3本文架構 22 第2章 濃度與速度量測原理 23 2.1濃度量測原理 23 2.2粒子影像測速法(DPIV) 32 第3章 實驗方法 36 3.1實驗儀器與材料 36 3.2實驗設置 40 3.2.1乾顆粒實驗設置 40 3.2.2濕顆粒實驗設置 42 3.3實驗參數設定 43 3.3.1 體積濃度參數設定 46 3.3.2 DPIV參數設定 47 第4章 實驗結果 51 4.1乾顆粒實驗結果 51 4.2濕顆粒實驗結果 64 4.3標準砂實驗結果 78 第5章 結論與建議 80 參考文獻 82

    [1] Ahn, H., Brennen, C. E., Sabersky, R. H. (1991). ʻʻMeasurements of velocity,velocity fluctuation, density, and stresses in chute flows of granular materials.’’, J. Appl. Mech, 58(3), 792–803.
    [2] Ancey, C. (2001). “Dry granular flows down an inclined channel: Experimental investigations on the frictional-collisional regime’’, Phys. Rev. E., 65, 011304.
    [3] Bagnold, R. A. (1954). ʻʻExperiment on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.ʼ’, Proc R Soc London, Ser A(225), 49–63.
    [4] Capart, H., Young, D. L., Zech, Y. (2002).ʻʻVoronoï imaging methods forthe measurement of granular flows.’’, Exp. Fluids, 32(1), 121–135.
    [5] Capart, H., Fraccarollo, L. (2011). ʻʻTransport layer structure in intense bed-load.’’, GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L20402.
    [6] Chauchat, J., Médale, M. (2014). ʻʻA three-dimensional numerical model for dense granular flows based on the μ(I) rheology’’, Journal of Computational Physics,256 , 696–712.
    [7] da Cruz, F., Emam, S. , Prochnow, M., Roux, J.N., Chevoir, F. (2005). ʻʻRheophysics of dense granular materials: Discrete simulation of plane shear flows’’, Phys.Rev.E, Stat.Nonlinear Soft Matter Phys, 72(2), 021309.
    [8] da Cruz, F.D., Emam, S., Prochnow, M., Roux. JN., Chevoir, F. (2005). ʻʻRheophysicsof dense granular materials: discrete simulation of plane shear flows.’’, Phys. Rev. E ,72 ,021309.
    [9] Drake, T. G. (1990). ʻʻStructural features in granular flows.’’, J. Geophys. Res, 95(B6), 8681–8696.
    [10] Egashira, S., Ashida, K., Yajima, H., Takahama, J. (1989). ʻʻConstitutive Equation of Debris Flow’’, (Annuals Disaster Prevention Research Institute), Kyoto Univ., No.32B-2,pp.487-501(in Japanses)
    [11] Egashira, S., Ashida, K., Takahama, J., Tanonaka S. (1990). ʻʻSediment transport formula derived from an energy dissipation model of solid-fluid mixture’’, Kyoto Univ., No.33B-2,pp.293-306(in Japanses)
    [12] Egashira, S., Ashida, K., Tanonaka S., Takahashi, T. (1991). ʻʻBed-load formula derived from constitutive equations of solid particles-water mixture’’, Kyoto Univ., No.34B-2,pp.261-274(in Japanses)
    [13] Egashira, S., Ashida, K. (1992). ʻʻ Unified view of the mechanics of debris flow and bed-load’’, Advances in Micromechanics of Granular Materials. Elsevier,391-400.
    [14] Egashira, S., Sato, T., Chishiro, K.(1994). ʻʻEffect of particles size on the structure of sand-water mixture’’, Kyoto Univ., No.37B-2,pp.359-369(in Japanses)
    [15] Egashira, S., Miyamoto, K., and Itoh, T. (1997). ʻʻConstitutive equations ofdebris flow and their applicability.’’ , Proc. 1st Int. Conf., Debris-Flow Hazards Mitigation, New York. ASCE, 340–349.
    [16] Egashira, S., Honda, N.and Itoh, T. (2001). ʻʻExperimental study on the entrainment of bed material into debris flow.’’, Phys. Chem. Earth (C), Vol. 26, No. 9, 645-650.
    [17] Forterre, Y. and Pouliquen, O.(2008). ʻʻFlows of Dense Granular’’, Annu. Rev. Fluid Mech.,40,1-24.
    [18] Forterre, Y. and Pouliquen, O. (2003). “Long-surface-wave instability in dense granular flows.’’, J. Fluid Mech. 486, 21–50.
    [19] GDR MiDi (2004). ʻʻOn dense granular flows.’’, Eur. Phys. J. E, 14, 341-365.
    [20] Huang, H., Fiedler, H., Wang, J. (1993b). ʻʻLimitation and improvement of PIV, Part II: Particle image distortion, a novel technique. ’’, Experiments in Fluids, 15(4-5), 263–273.
    [21] Jambunathan, K., Ju, X. Y., Dobbins, B. N., Ashforth-Frost, S. (1995). ʻʻAn improved cross correlation technique for particle image velocimetry.’’, Measurement Science and Technology, 6(5), 507–514.
    [22] Jop, P., Forterre, Y., Pouliquen, O. (2006). “A constitutive law for dense granular ows.’’, Nature, Nature Publishing Group, 441, 727-730.
    [23] Khakhar D. V., Orpe, A. V., Andersen, P. and Ottino, J. M. (2001). ʻʻSurface flow of granular materials: model and experiments in heap formation.’’, J. Fluid Mech., 441, 255-264.
    [24] Komatsu, T. S., Inagaki, S., Nakagawa, N., Nasuno, S. (2001). “Creep motion in a granular pile exhibiting steady surface flow.’’, Phys. Rev. Lett., 86, 1757-1759.
    [25] Lemieux, P.-A. and Durian, D. J. (2000). ʻʻFrom avalanches to fluid flow: A continuous picture of grain dynamics down a heap.’’, Phys. Rev. Let., 85, 4273-6.
    [26] Maurin, R. (2015). “Investigation of granular behavior in bedload transport using an Eulerian-Lagrangian model.’’, Universite Grenoble Alpes., Geophysics [physics.geo-ph]
    [27] Maurin,R., Chauchat, J. and Frey, P. (2016). “Dense granular flow rheology in turbulent bedload transport.’’, J. Fluid Mech., vol. 804, 490-512.
    [28] Michael, B., Michael J, R., Kustau, A., Mandayam, S., Sukumaran, B. (2010). “Measurement of porosity in granular particle distribution using adaptive thersholding.”, IEEE Transactions on instrumentation and measurement, vol. 59, 1192-1199.
    [29] Miyamoto, K. (1985). ʻʻMechanics of Grain Flows in Newtonian Fluid’’, Ph.D.-thesis presented to Ritsumeikan Univ.(in Japanese)
    [30] Papa, M., Egashira, S.and Itoh, T. (2004). ʻʻCritical conditions of bed sediment entrainment due to debris flow’’, Natural Hazards and Earth System Sciences, 4, 469–474.
    [31] Pouliquen, O. (1999a). ʻʻScaling laws in granular flows down rough inclined planes.’’, Phys. Fluids, 11, 542–48.
    [32] Pouliquen, O. and Forterre, Y. (2002).“ Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane.’’, J. Fluid Mech., vol. 453, 133-151.
    [33] Pouliquen, O., Cassar, C., Jop, P., Forterre, Y., Nicolas, M. (2006). ʻʻFlow of dense granular material: towards simple constitutive laws.’’, J. Stat. Mech., P07020
    [34] Raffel, M., Willert, C., Wereley, S. and Kompenhans, J. (2007). ʻʻParticle Image Velocimetry.’’, Springer, 2nd Edition
    [35] Rajchenbach, J. (1990). ʻʻFlows in powder: from discrete avalanches to continuous regime.’’, Phys.Rev. Let. , 65 (18), 2221-2224.
    [36] Sarno, L., Papa, M.N., Villani, P., Tai, Y-C (2016). ʻʻAn optical method for measuring the near-wall volume fraction in granular dispersions.’’, Granular Matter, 18(4):80
    [37] Scarano, F., Riethmuller, M. L. (2000). ʻʻAdvances in iterative multigrid PIV image processing.’’, Experiments in Fluids, 29(0), S051–S060.
    [38] Schwager, T. and Pöschel, T. (2007). “Coefficient of restitution and linear–dashpot model revisited’’, Granular Matter, 9, 465–469.
    [39] Spinewine, B., Capart, H., Larcher, M., Zech, Y. (2003). ʻʻThreedimensional Voronoï imaging methods for the measurement of near-wall particulate flows.’’, Exp. Fluids 34(2), 227–241
    [40] Spinewine, B., Capart, H., Fraccarollo, L., Larcher, M. (2011). ʻʻLaser stripe measurements of near-wall solid fraction in channel flows of liquid–granular mixtures.’’, Exp. Fluids, 50(6), 1507–1525.
    [41] Spinewine, B. and Capart, H. (2013). ʻʻIntense bed-load due to a sudden dam-break’’, J. Fluid Mech., vol. 731, 579-614.
    [42] Stamhuis, E. J., Videler, J. J. (1995) ʻʻQuantitative flow analysis around aquatic animals using laser sheet particle image velocimetry.’’, Journal of Experimental Biology, 198(2), 283–294.
    [43] Taberlet, N., Richard, P., Valance, A., Delannay, R., Losert, W., Pasini, J.M. and Jenkins, J. T. (2003). ʻʻSuper stable granular heap in thin channel.’’, Phys. Rev. Let., 91, 264301.
    [44] Tai, Y. C., Cheng, C. K., Lai, G. C. (2016).“An Approach to Adaptive Correction Factors in Depth-Averaged Model for Debris Flows. ”, EGU General Assembly, p. 11806.
    [45] Thielicke, W. (2014). ʻʻThe Flapping Flight of Birds –Analysis and Application’’, Ph.D thesis, university of groningen, 26-61.
    [46] Thielicke, W. and Stamhuis, E. J. (2014). ʻʻPIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB.’’, Journal of Open Research Software, 2: e30, 1-10.
    [47] Westerweel, J. (1993) ʻʻAnalysis of PIV interrogation with low pixel resolution.’’, Proc. SPIE, 2005, 624-635.
    [48] Willert, C. E., Gharib, M. (1991). ʻʻDigital particle image velocimetry.’’ Exp.Fluids, 10, 181-193.
    [49] 沈家齊(2014). ʻʻ土石流理論流速濃度與修正係數之探討’’,國立成功大學水利與海洋工程學系碩士論文

    無法下載圖示 校內:2019-05-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE